

MASSACHUSETTS GENERAL HOSPITAL

RADIATION ONCOLOGY

The MGH Experience with a Single Room Proton Therapy System

Modern Single Room Proton Therapy Installations: Challenges and Opportunities for the Medical Physicist

Marc Bussière, MSc DABR, Director of Stereotactic Physics (photons and protons) on behalf of the MGH proton therapy team with special thanks to Ben Clasie

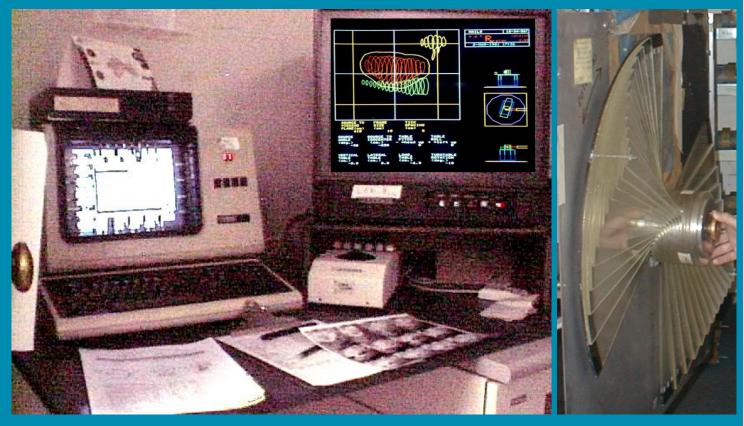
AAPM Annual Meeting, July 2022

OBJECTIVES

Overview of MGH experience prior to introducing the single room system

Motivation for single room system

Introduction to MGH-Protom system


Process and effort required from install to 1st delivery

Ongoing QA

Challenges and opportunities for physicists

HARVARD CYCLOTRON LABORATORY / MGH (95" cyclotron, 3 horizontal fixed passive-scattering beamlines)

- 95" cyclotron 160 MeV
- 3 horizontal fixed passive scattering beamlines
- accelerator maintenance by HCL staff
- discrete number of large modulation wheels
- custom apertures and range compensators
- in-house TPS (X/P)
 - flat SOBP
 - pasted distal and lateral fall-off
- each field's range and output measured

HARVARD CYCLOTRON LABORATORY / MGH

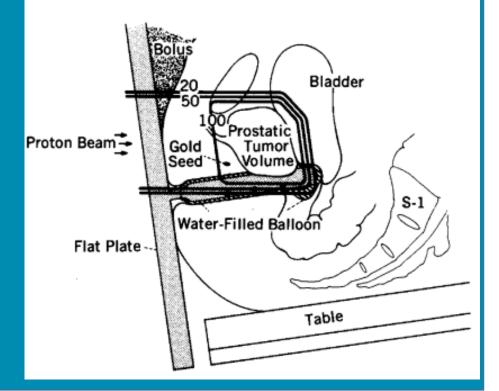
- Linac treatments 1 day per week
- supine, pitch/roll ± 10° (R, L, R/L coronal obliques), conventional CT
 - cranial, H&N, body
 - "conventional" immobilization

HARVARD CYCLOTRON LABORATORY / MGH (Linac treatments 1 day per week)

- supine, pitch/roll ± 10° (R, L, R/L coronal obliques), conventional CT
 - cranial, H&N, body
 - "conventional" immobilization
- seated (A, P, R, L, axial obliques), vertically mounted CT
 - cranial, H&N, body
 - complex immobilization incl. orthopedic casts and modifiable supports

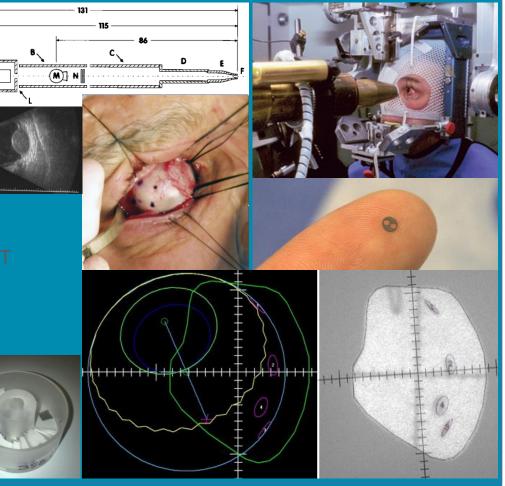


HARVARD CYCLOTRON LABORATORY / MGH (Linac treatments 1 day per week)


- supine, pitch/roll ± 10° (R, L, R/L coronal obliques), conventional CT
 - cranial, H&N, body
 - "conventional" immobilization
- seated (A, P, R, L, axial obliques), vertically mounted CT
 - cranial, H&N, body
 - complex immobilization incl. orthopedic casts and modifiable supports
- decubitus (A, P, RAO/LPO, RPO/LAO, A/P sagittal obliques), conventional CT
 - body
 - orthopedic body cast attached to plywood frame with door hinges

HARVARD CYCLOTRON LABORATORY / MGH (Linac treatments 1 day per week)

- supine, pitch/roll ± 10° (R, L, R/L coronal obliques), conventional CT
 - cranial, H&N, body
 - "conventional" immobilization
- seated (A, P, R, L, axial obliques), vertically mounted CT
 - cranial, H&N, body
 - · complex immobilization incl. orthopedic casts and modifiable supports
- decubitus (A, P, RAO/LPO, RPO/LAO, A/P sagittal obliques), conventional CT
 - body
 - orthopedic body cast attached to plywood frame with door hinges
- lithotomy (inferior), conventional CT
 - prostate, stirrups with rectal probe and balloon

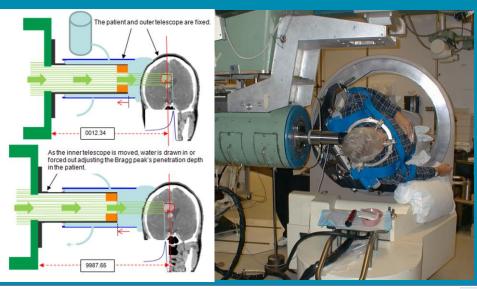

HARVARD CYCLOTRON LABORATORY / MGH

1 Fractionated Fixed Beamline (double scattering, maximum WET: 16.3 cm)

- supine, pitch/roll ± 10° (R, L, R/L coronal obliques), conventional CT
 - cranial, H&N, body
 - "conventional" immobilization
- seated (A, P, R, L, axial obliques), vertically mounted CT
 - cranial, H&N, body
 - · complex immobilization incl. orthopedic casts and modifiable supports
- decubitus (A, P, RAO/LPO, RPO/LAO, A/P sagittal obliques), conventional CT
 - body
 - orthopedic body cast attached to plywood frame with door hinges
- lithotomy (inferior), conventional CT
 - prostate, stirrups with rectal probe and balloon

2 Ocular Beamline (single scattering, maximum WET: 4.0 cm)

- seated in barber's chair with eyelid retractors, no CT
- apertures and modulation wheels
- tantalum surgical clips or clinical light field setup



HARVARD CYCLOTRON LABORATORY / MGH

- # 1 Fractionated Fixed Beamline (double scattering, maximum WET: 16.3 cm)
 - supine, pitch/roll ± 10° (R, L, R/L coronal obliques), conventional CT
 - cranial, H&N, body
 - "conventional" immobilization
 - seated (A, P, R, L, axial obliques), vertically mounted CT
 - cranial, H&N, body
 - complex immobilization incl. orthopedic casts and modifiable supports
 - decubitus (A, P, RAO/LPO, RPO/LAO, A/P sagittal obliques), conventional CT
 - body
 - orthopedic body cast attached to plywood frame with door hinges
 - lithotomy (inferior), conventional CT
 - prostate, stirrups with rectal probe and balloon
- # 2 Ocular Beamline (single scattering, maximum WET: 4.0 cm)
 - seated in barber's chair with eyelid retractors, no C1
 - apertures and modulation wheels
 - tantalum surgical clips or clinical light field setup

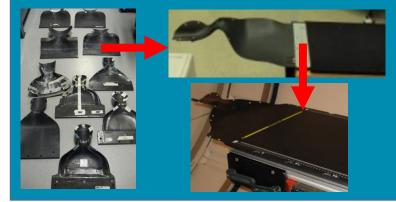
3 SRS (single scattering, maximum WET: 14.2 cm)

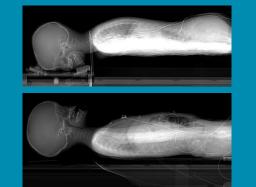
- conventional CT with α cradle mold
- 4π isocentric treatment geometry
- invasive fixation
- custom apertures
- water bolus conforms to external body
- water column range pullback to create SOBP

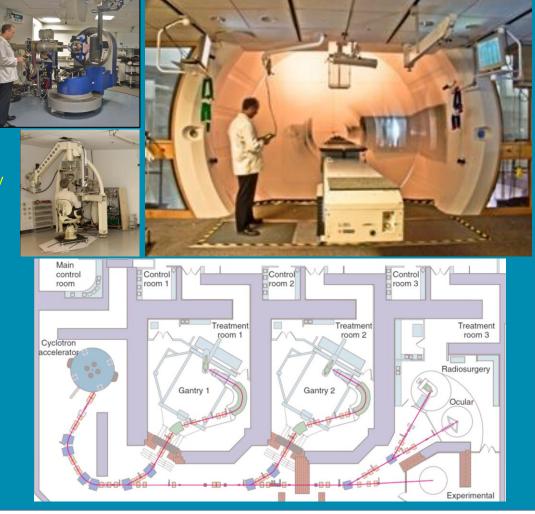
MGH Northeast Proton Therapy Center / Francis H. Burr Proton Center

IBA Proton Therapy System:

Proteus PLUS 235 isochronous cyclotron <u>1st clinical release</u>


2 gantries, 2D/3D imaging (Double Scattering \rightarrow PBS 2008/2011/2015 & 2020)


1st IBA site to deploy PBS; 3 yrs @ 100x 4pm-7am development/commissioning shifts/yr to 1st TX Another 3 yrs of refinement and recommissioning to 2nd patient (DS+PBS) and another 2 yrs to PBS only


1 in-house dedicated SRS single-scattering beamline, non-invasive (2006-2018)

1 ocular beamline (same system as HCL, improved imaging)

improved technology, immobilization, workflow and automation...

Consideration of a 2nd Proton Delivery System: Compact PBS Solution

WHY?

increased capacity

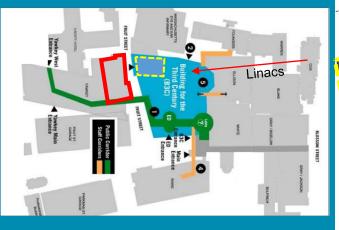
improved technology

5-7 week waiting list

CBCT imaging smaller spot size safety systems improved integration

proton treatment redundancy

minor repairs and unanticipated down time major planned events,


e.g., IBA cyclotron down 3 months + ramp up/down to replace main coils

WHERE?

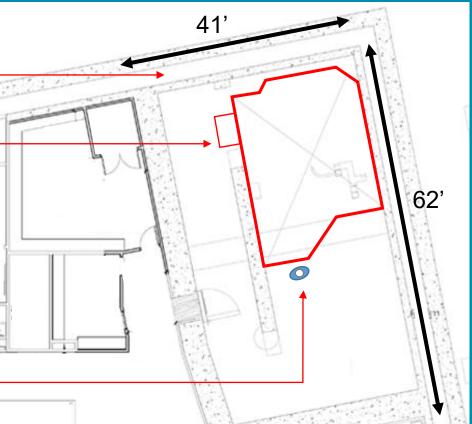
"new" on-campus, hospital building lower floor designed for Linacs

WHEN?

2007-2008 demo 3 existing buildings2009-2011 construction of 530,000 sf building2011 Linac based treatments start

Consideration of a 2nd Proton Delivery System: Compact Solution

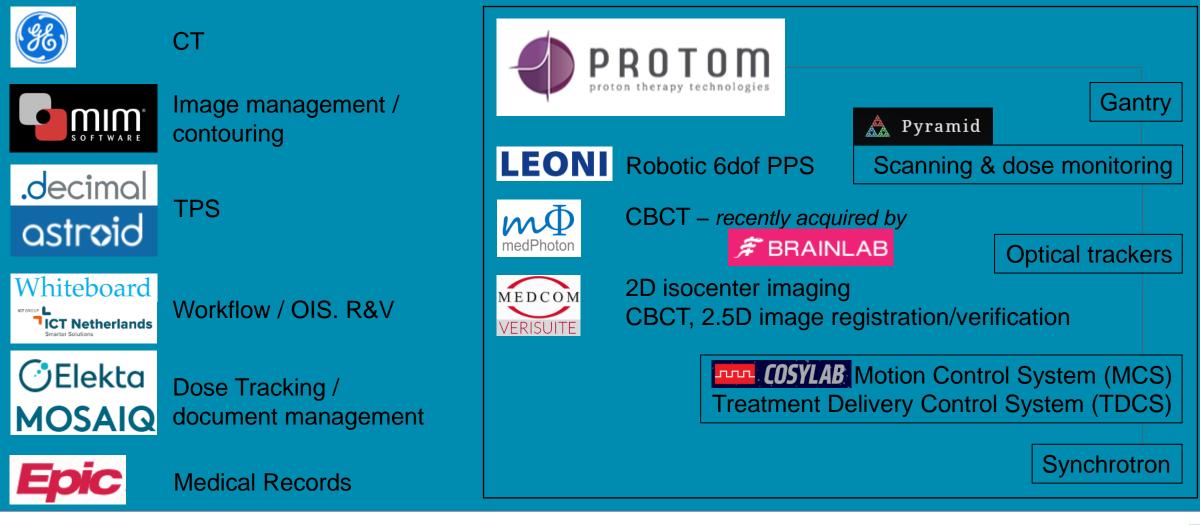
WHERE \ WHEN? Penthouse 2007 concept Patient beds 11 Patient beds 10 Patient beds 9 Patient beds 8 Patient beds 7 Mechanical mezz. Mechanical floor 5 Procedural floor 4 Operating rooms 3 Procedural floor 2 Ambulance entrance and Emergency dept. 1 Loading dock and Receiving floor LL Sterile processing LL1 Radiation Oncology LL2 Radiation Oncology LL3



2nd Proton Delivery System: Compact Solution (no vendor selected)

WHERE \ WHEN?

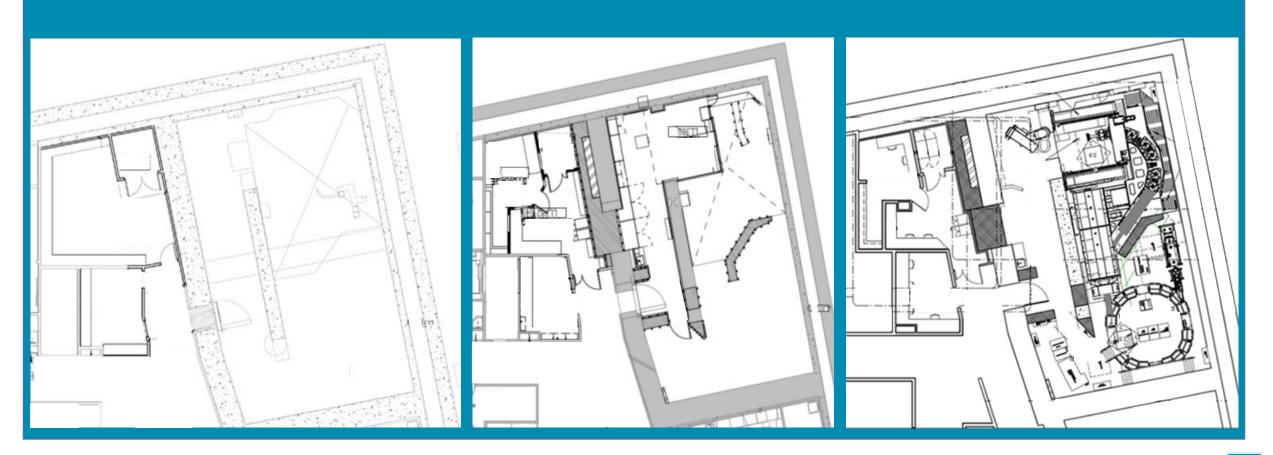
2011 vault cavity construction complete2012 DoN approval (MA DPH Determination of Need)2013 system specifications defined for RFP (beamline, accessibility...)



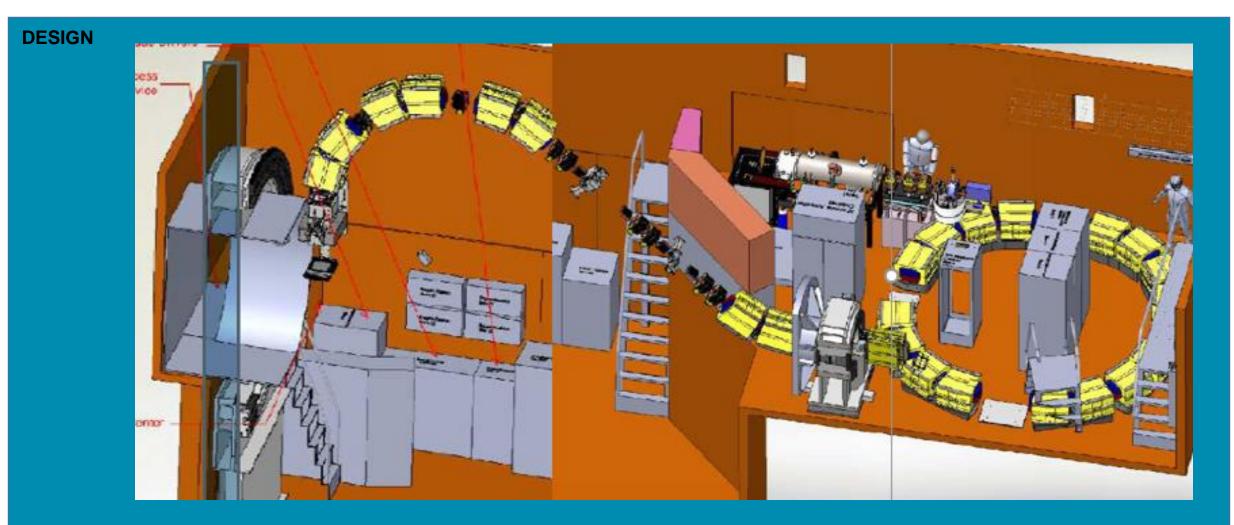
SEQUENCE FOR OUR NEW PROTON FACILITY

- hospital building design, demo & construction (4 years)
- proton vault design based on knowledge of various single room vendor options available
 - no vendor selected at this time
 - integrated with building construction
- obtain Determination of Need (DoN) from state
- funding secured
- request for proposals
- vendor selection
 - Protom
 - first-generation system requiring substantial contract details

MGH PROTOM RADIANCE 330 OVERVIEW


SEQUENCE FOR OUR NEW PROTON FACILITY

- Vendor specific facility design / construction by MGH (1 year)
- Installation (with vendor bankruptcy restructuring thrown into the mix, 3 years)
- Vendor pre-release testing
- Define QA / QC program / operations / clinical workflows
- Acceptance (1 year)
- Commissioning (6 weeks)
- FDA site clearance
- State licensing (7 months after initial walkthrough)
- Treatments

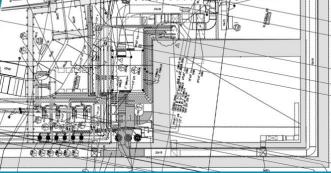

Lots and lots of planning, committees at every stage of the process...

DESIGN

WHEN?

2014-16 significant design effort (this is the 2nd ProTom install, with significant changes from the original system)

- facility
- imaging system
- sub-system integration and interface
- treatment workflows...


infrastructure work

- essential additional shielding
- HVAC
- electrical
- deionized water system
- chilled water loops
- fire protection
- compressed air
- Medical gases
- ...

MGH 1811

GANTRY DELIVERY

2016 factory \rightarrow MGH ...some individual components as heavy as 12 tons (24,000 lbs.)

ASSEMBLED GANTRY (190°)

2016

SYNCHROTRON DELIVERED / ASSEMBLED

2017

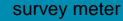
WHEN?

Use (U):

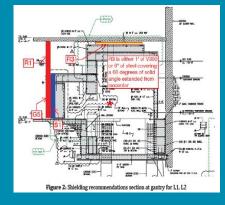
٠

2014-17 Design shielding through survey verification

- Primary barrier transmission B = Pd²/WUT
- Shielding goal (P): ≤ 0.02 mSv / wk
- Workload (W): 40 hrs/wk, 155 TXs/wk @ 2 GyRBE/TX
 - ~ 10⁹ protons / Liter = 1-2 cGyRBE mostly dependent on depth [x1.25 buffer]
 - MGH historical trends, half-gantry G90° (horizontal) 5%, G0/180° (vertical) 22.5%, G±45° (oblique) 5% [x1.25 buffer]
- Occupancy (T): 20% hallways, 100% office and control rooms, 50% adjacent Linac vault


Wendi detector

OSL



bubble detector

PATIENT POSITIONER 6 dof ROBOT DELIVERED / ASSEMBLED

2017

PPS Specifications

Marian and a stinet waight	200 hz
Maximum patient weight	200 kg
Load height	63.5 cm
Pitch and roll	+/- 15deg
Knuckle rotation	200 degrees
Combined PPS and gantry isocentricity	<1mm diameter sphere
Remastering (a calibration procedure)	1 hour
Optical tracking of couch position and automatic sag correction	YES
Automatic mini-pit cover	YES
Customized, indexed patient couch carrier/transfer plate	YES (can be removed within 3 min) "The Patient Positioning Subsystem shall be able to accept current commercially available proton therapy Couches (such as Q-Fix, Civco or Elekta). This requirement can be met by having the ability to dock different transfer plates (couch tops) to the carrier plate of medPhoton's CBCT solution. "
Haptic controller	An option, still to be investigated
Distress buzzer	An option, MGH may supply a wireless device
Unload in the case of power failure	UPS power

May

August

ON-BOARD IMAGING

2018 (January)

78 cm large bore, 40x40 cm fluoro-capable detector with 0.2 mm pixels, 4 rpm non-isocentric CBCT with 32 cm longitudinal x 60 cm axial FOV

PRE-ACCEPTANCE

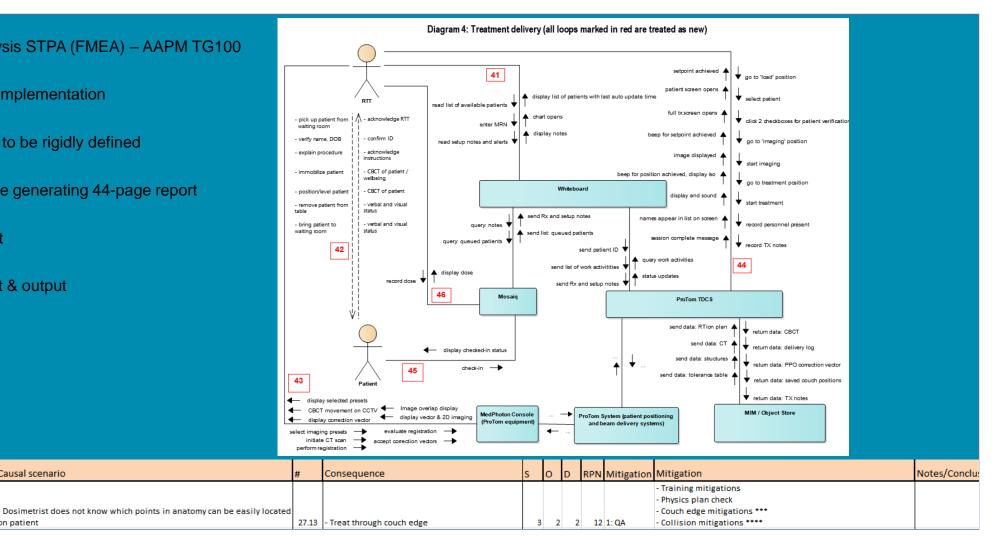
System Theoretic Process Analysis STPA (FMEA) – AAPM TG100

- ideal for new multi-system implementation ٠
- does not require workflows to be rigidly defined ٠
- analysis performed in-house generating 44-page report .

Hazard Causal scenario

on patient

1


reviewed by external expert ٠

Unsafe control action

Dosimetrist an ambiguous reference position in

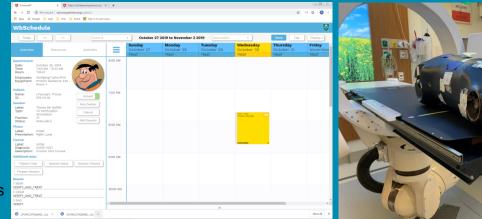
the patient CT when they do not know what to do

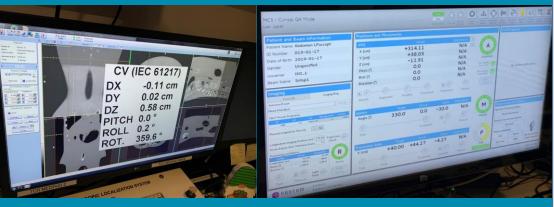
who / where / process input & output ٠

TREATMENT RELATED WORKFLOW

$\underline{\mathsf{IMPORT}}$ "published" TPS DICOM CT/RTplan/RTst into OIS \rightarrow IMAGING / TDCS

FIELD SPECIFIC QA


- 2D measurement at 2 depths delivered at 0° fixed angle
- delivery verified at treatment angle without measurement


VERIFICATION SIMULATION (couch edge interlocks tested \ added)

CBCT (2,5D) defines expected treatment parameters & iso coordinates

TREATMENT (Gantry @ q10° initially, now q5°)

- CBCT and registration establishes plan isocenter(s) in room coordinates (virtual shifts)
- PPS robot translates/rotates patient to treatment position across the room
 - includes actual patient shifts + gantry sag correction
- 2.5D registration imaging at isocenter available
- Move patient to subsequent field
 - optical sensors independently confirm final PPS position
 - gantry must be 30° above horizontal before making any PPS motion
 - If imaging, move couch away from gantry for CBCT
 - can image and treat without going into the room

ACCEPTANCE

Typical time estimate for an established system with a knowledgeable team ~ 4-6 weeks

Our system is first generation with many "new" sub-vendor components being integrated (5/2018 - 5/2019 + 11/2019)

- troubleshooting and testing the system with the vendor (> 124 tests)
- performed as components were installed and connected as others were added on

System	Tests
Equipment-building interface	Monthly power test, power failure, chilled water failure, HVAC failure
Gantry	Mechanical isocenter, range of motion, accuracy, speed
Patient positioning system	Mechanical isocenter, range of motion, sag, backlash, vibrations, accuracy, speed, buzzer
Imaging (2D and CBCT)	Limits, imaging dose, image quality, HVL, kVp, timer, scaling, FOV, registration and geometric accuracy, imaging and reconstruction time
Dose delivery	Proton range: min to max, accuracy, reproducibility, and energy spread Pencil beam: position, lateral spread, scanned distance, Gp Nozzle: SAD, range shifters Beam level: delivery time, field size, dose uniformity, gantry dependence, linearity, dose distribution
Lasers	Functionality and alignment
Integration	Origin alignment, treatment time, gating, test with MGH workflow and OIS, machine modes, hand pendant, log files, overhead displays, start-up time, continuations and other non-ideal conditions
Mock treatments	Superior cranial, H&N, Thoracic, Abdominal small, Abdominal large, CSI, orientation (patient, gantry, couch, imaging, CT ref, beam coordinates)
Safety	Shielding, nozzle leakage, door interlock, search zones, E-stop, warning lights, audible beam-on warning, collision mitigation

ACCEPTANCE

			DETEOT
		PTCOG	RETEST
	May 2018	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	
	-	tu we th fr sa su mo tu we th	20190819_MatriXX_UniformityTest
Burr	Early Late	BWBWNDATBWSSJMBNDMBSSJNDBWATNDMBSSJATKJHBWSSJMBKJATMBJDKJBWKJATHMLJDHMLJDSSJSSJSSJSSJSSJSSJSSJSSJATHMJDATHML	20191014_imaging
	Lead	BC BW BW BC BC BC GS BW BC BC BC BW BC GS BC BW BC BC BC BC BC BC BW BC	
Lunder	Sec. Lead	MB BC BC AT MB KJ BC BC MB AT MB BC GS BC MB BC DPG MB AT GS BC H GS BC MB	20191016_isocentricity
(7am-3pm)	Float	RES RES RES JS JS JS WS JS JS RES RES RES WS RES RES JS JS JS WS H RES RES JS	20191023_gantry_compensation
Lunder	Lead	KJ GS ND GS GS KJ GS GS GS ND GS KJ GS GS GS H KJ KJ GS	20191023_isocentricity
(3pm-11pm)	Sec. Lead	GS SSJ GS ND JD GS JD SSJ ND KJ BC GS KJ SSJ JD H GS GS SSJ	20191024_dose_control_calibration
	Float	MC MC MC MC WS MC MC MC MC MC MC MC MC WS H MC MC MC	
	Jun 2018	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	20191024_dose_linearity
		fr sa su mo tu we th fr sa	20191025_gamma_normalization
Burr	Early Late	AT ND SSJ SSJ ND AT BW SSJ ND MB AT MB SSJ SSJ ND BW KJ MD BW KJ MD JD BW HI JD KJ MD JD KJ BW HML JD KJ MD JD <	20191031_cbct
	Lead	BW BC GS BC BC BW BC BC GS BC BC BW BC	
Lunder	Sec. Lead	BC GS BC MB BW AT KJ MB GS BC BW MB BC MB AT KJ ND MB ND AT MB BC BW ND MB ND AT MB BW GS	
(7am-3pm)	Float	JS JS WS RES RES RES JS JS JS WS JS JS JS RES RES RES WS RES RES RES JS JS JS WS JS JS JS RES RES RES	20191112_field_uniformity
Lunder	Lead	ND GS GS KJ GS ND GS GS GS GS KJ KJ GS KJ GS GS ND GS GS KJ KJ	20191112_max_field
(3pm-11pm)	Sec. Lead	GS SSJ JD GS ND GS JD JD ND SSJ ND GS SSJ GS HML JD GS HML SSJ GS JD	20191112-gamma
	Float	MC MC MC MC WS MC	
		AAPM	20191115_lynx
	Jul 2018	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	20191119_isocentricity
	Early	su mo tu we th fr sa su mo tu mo tu we th fr sa su mo tu	20191211_lynx
Burr	Late	KJ ND H JD KJ HML AT BW MB JD KJ HML AT BW MB	20191212_gantry_rot
	Lead	GS BC BC H BC BC KJ BC BC BC BW BC BC BC GS BC BC ND BW BC BC GS BC BC BW BC BC GS BC GS BC	
Lunder (7am-3pm)	Sec. Lead	BC BW MB H AT MB BC GS MB BW BC MB AT GS BC AT BW BC BC HML GS BC HML BW BC AT HML GS BC MB ND	20191213_isocentricity
(ram-spin)	Float	WS RES RES H JS JS JS WS JS JS JS RES RES RES WS RES RES IS JS JS WS JS JS RES RES RES RES WS RES RES	20191213_logs
Lunder	Lead See Lood	ND ND H GS GS KJ GS GS GS KJ KJ ND GS GS KJ KJ ND GS GS KJ KJ GS	20191216_lynx
(3pm-11pm)	Sec. Lead Float	GS SSJ H ND JD GS KJ SSJ HML JD GS GS SSJ ND JD GS GS SSJ ND JD GS SSJ MC MC H MC WS MC MC MC MC WS MC MC MC MC MC MC MC MC WS MC MC	20191218_isocentricity
	Tioal		
Shift lead		Prioritize procedures, answer questions about the measurement setup, sign forms, be familiar with the analysis framework, help to analyze data in real time, must be ABR certified	
Secondary sh	ift lead	Be a second set of eyes to check the results. Check on the shift from time to time. Discuss issues coming up in real time with the shift lead. Be at MGH and on call.	
Float		Must be familiar with the measurement devices, set up detectors, acquire data and analyze data in real time	

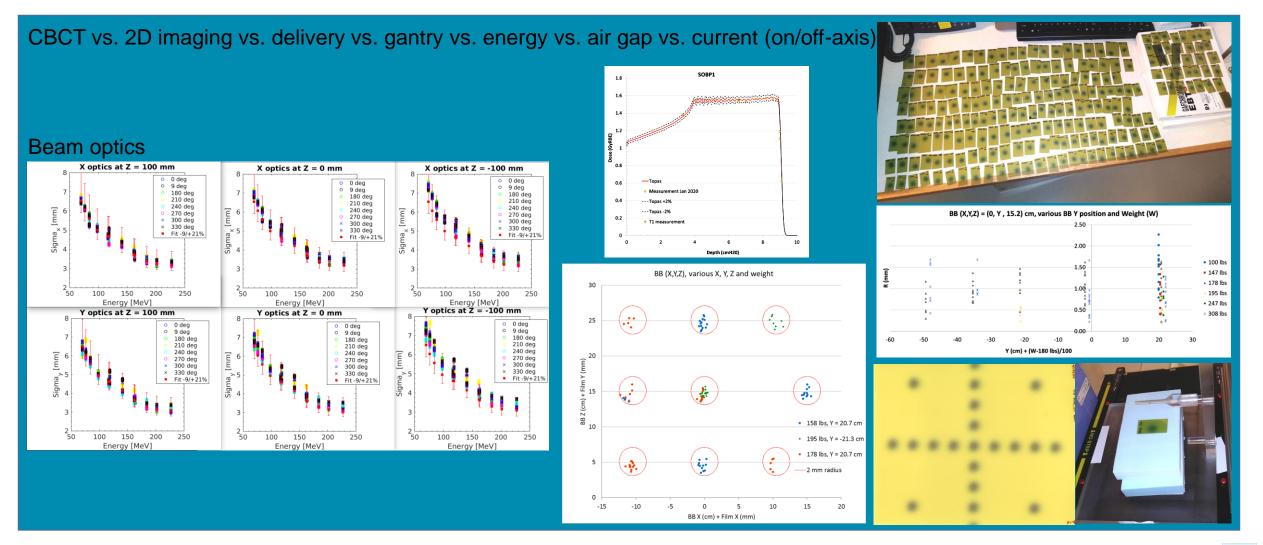
MGH 1811

Actual shifts were intermittent and averaged closer to 1.5 per day

COMMISSIONING, VALIDATION & TREATMENT PREP

IAEA Technical Report Series TRS-398	Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water
MGH Internal Commissioning Reports	Burr Proton Center
Massachusetts 105 CMR	120.437 Section (T)
AAPM Task Group Report 45	Code of Practice for Radiotherapy Accelerators
AAPM MPPG 5.a	Commissioning and QA of Treatment Planning Dose Calculations – Megavoltage Photon and Electron Beams
AAPM Virtual Library	2015 Summer School "Clinical Commissioning of Proton Beams", Lei Dong.
Medical Physics 37 2010	Commissioning of the discrete spot scanning proton beam delivery system at MDACC Proton Therapy Center, Houston, M. Gillin
J. Appl. Clin. Med. Phys. 19 2018	Commissioning of the world's first compact pencil-beam scanning proton therapy system, R. Pidkiti
AAPM Task Group Report 224	Comprehensive proton therapy machine quality assurance
AAPM Task Group Report 185	Clinical commissioning of intensity-modulated proton therapy systems

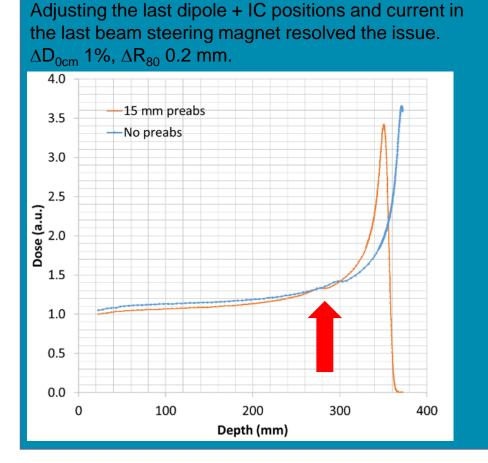
6 weeks (1.6/2019 + 2.12/2019 - 2/2020) followed by treatments within a few weeks


1. Commissioning measurements that did not depend on certain systems such as TDCS, MCS, Robotics, imaging, and scanning nozzle

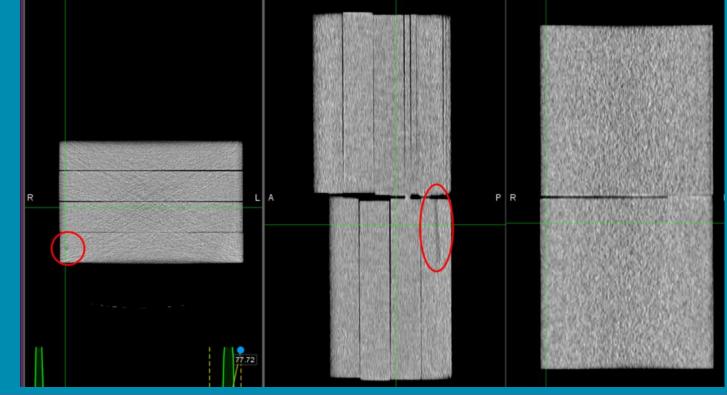
Calibrate delivery system following TRS-398 [uncommissioning TPS generated 12 x 12 cm² reference cube R23M6], dose uniformity ≤ ± 1.1%

Define HU to RSP curve(s) for CT scanner(s) and various protocols ✓

Safety Checks Collect TPS data for beam modeling and verification Radiation safety Patient positioning system cGyRBE/gp (cGy/MU) Gantry SOBP depth dose uniformity, distal/proximal fall-off Alignment of axes SOBP cross-sectional dose uniformity, penumbra Beam to imaging origin alignment 2D X-ray system delivery settings v. TPS R_{90water} CBCT..... SAD Scanning magnet calibration..... pristine peaks depth dose profiles Source to axis distance..... range vs RT_{ion} plan energy In-air sigma..... in-air σ_x , σ_y vs. Energy Pristine peak measurement - Bragg peak chamber RS position (air gap) vs radiation isocenter SOBP measurements..... couch, shifter and immobilization device WET Astroid Range vs. Measured Range..... interlock limits (plan input values, collision detection, motion, delivery, system failures...) Output calibration Entrance dose radiation surveys including vault for activation (imaging and treatment) Monitor chamber linearity and gantry angle dependence.. Winston Lutz imaging vs. radiation isocentricity Field size robot motion and collision proximity Pauses and continuations ("MUd")..... laser alignment to isocenter Other mock and integration tests monthly, daily QA procedure baselines Limitations..... imaging Uncertainty estimates..... hidden targets ETE tests QA.....



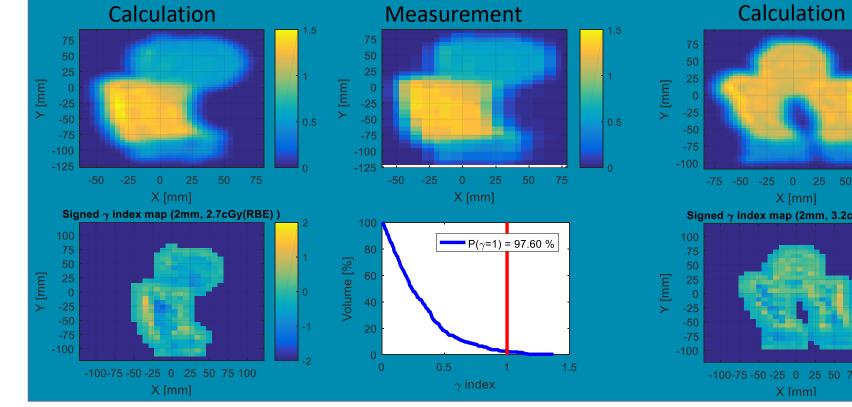
MGH 1811


Interlocks Realized system uncertainties Position ± 1.5 mm Sigma ± 15% Spot Gp ± (1.0% + 0.003 Gp) Cumulative Gp ± (1.0% + 0.003 Gp) ± 0.25 MeV, not an explicit nozzle interlock but rather beam Energy will not extract correctly and trigger other nozzle interlocks MU chamber linearity and gantry dependence ± 1% Gantry angle uncertainty ± 0.5° Couch rotation movement accuracy ± 0.15° Couch translation movement accuracy ± 0.5 mm Gantry isocenter uncertainty (using couch 1.2 mm diameter PPCA position correction) Couch isocentricity uncertainty 1.3 mm diameter Beam to imaging isocenter alignment ± 2 mm uncertainty Absolute dose ± 2% except for the entrance region ≤ 15 mm Sigma -9 to +21% Range in room temperature water ± 1 mm Position registration of soft tissue ± 1 to 1.5 mm kVue extension thickness ± 0.3 mm H20 +0.5 to +1 mm (measurement is larger than CT) medPhoton carrier plate thickness Qfix2 couch thickness Consistent with uncertainties in department boards Range shifter thickness ± 1% Uncertainties due to relative stopping power, interfraction motion, patient movement between registration and treatment, and patient weight loss during treatment are independent of the Lunder Proton machine but these uncertainties should be considered when making treatment margins

Beam scraping

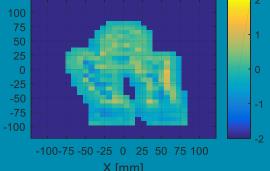
Defective Solid Water

Returned to manufacturer for replacement

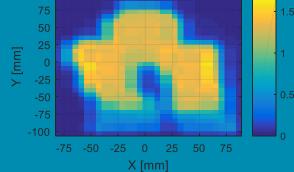


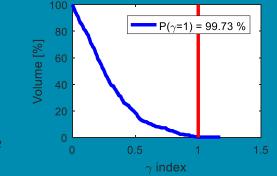
VALIDATION

Head and Neck fields, γ(2mm,2%)


Feb 15, 2019

Beam 270A1




Beam 180A2 50 25 Y [mm] -75 -75 -50 -25 0 25 50 75

Signed γ index map (2mm, 3.2cGy(RBE))

MGH 1811

QA EQUIPMENT

IAEA Technical Report Series (TRS) No. 398 ABSORBED DOSE DETERMINATION IN EXPERIMENTAL RADIOTHERAPY, 2000 An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water

PTW MP-3P (entrance window: 5.93 mm)

QA EQUIPMENT

MatriXX PT (2mm electrode gap) and Evolution (5 mm gap) have the same detector array. In comparison with the MatriXX Evolution, a significant improvement absolute dose is observed with MatriXX PT. The MatriXX Evolution should not be used for QA of PBS for conditions in which ion recombination is not negligible.

Lin et al., Use of a novel two-dimensional ionization chamber array for pencil beam scanning proton therapy beam quality assurance, JACMP 16(3), 2015.

The Zebra demonstrated better than 1% reproducibility and monitor unit linearity. The response of the Zebra is sensitive to radiation field sizes greater than 12.5 \times 12.5 cm (not a problem for CAX scanned beams). Zebra and Bragg peak chamber range values demonstrated agreement of 0.0 \pm 0.3 mm with a maximum deviation of 1.3 mm for PBS. The setup and measurement time using the Zebra is 3 and 20 times less compared to using a water tank.

Dhamesar et al., Quality assurance of proton beams using a multilayer ionization chamber system, Med. Phys. 40(9)

Waterproof plane-parallel chamber for dosimetry in proton beams Material same measures Entrace window 3.55 mm PMAA 0.1 mm parallel 1.1 mm parallel 1.2 mm parallel Water-equaler 4 mm 4 2 mm window fridness Deministra for simple. escla 40.8 mm Bragg Peak® 150 Type 34089 Very large area plane-parallel chamber for dosimetry in proton beams Materiats and measures means works of 20 mm PC for 2 mm CHP 0.03 mm graphic Teal window are derery 4 for graphic

> radius 73.5 mm depth 2 mm

nw thicknes

Weight: approx, 10 kg

included

Dimensions: 43.9 cm [L] x 19.5 cm [H] x 17.5 cm [W]

Interface to PC: point to point or network Ethernet connection

Power supply: 100-240 V, 50/60 Hz, power cord with US or German power plug

Application: measurement of depth dose distribution in particle therapy

Positioning: nozzle mount (holder optional) or patient table

Measuring quantity: pristine and spread-out Bragg peak (SOBP)

Signal to noise ratio: max. 0.2 % with 1 cGy integrated dose
Dose linearity: max. 0.5 % from 10 cGy up to 5 Gy integral dose

max, 1% from 0.5 Gylmin up to 15 Gylmin dose rate
Collecting electrode: 2.5 cm in diameter
Spatial resolution: 2 mm detector spacing (native resolution)
Chamber type: vented ionization chambers

Electrometer: 4 TERA ASICs (each contains 64 indep

Readout: parallel and synchronous with no dead time

Electrode diameter 5 mm

Markus parallel plate chamber

Range accuracy: ± 0.5 mm

Energy range: 33 cm WE

Dose rate range: 0.5 Gy/min to 15 Gy/mi

Typical sensitivity: 14.76 nC/Gy

Charge resolution: 0.1 pC/coun
Sampling time: min_10 ms

Channels: 180

Technical Information

MatriXX PT and MatriXX ONE

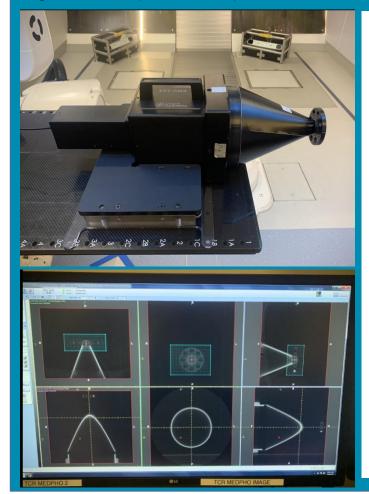
- 1020 air-vented ionization chambers
- Automated k[t, p] correction of the chamber signal
- Lightweight 10 kg
- 20 ms read-out time without dead time
- Active area of 24.4 × 24.4 cm²
- Pixel spacing 7.6 mm

MatriXX PT

- Ideal for Cyclotron PBS beams
- Chamber volume: 32 mm^a
- Electrode gap: 2 mm

MatriXX ONE

Ideal for high intensity Synchro-Cyclotron systems


AGF

- Chamber volume: 16 mm³
- Electrode gap: 1 mm

QA EQUIPMENT

Logos XRV-124 (Winston Lutz)

Specifications:

Accuracy: 1

XYZ Beam Center:	0.3 mm (hi-res)
Repeatability:	±0.03 mm (typical)
Vector Theta/Phi:	0.3 degree (hi-res)
Repeatability:	±0.1 degree (typical)

Optical System: 1

Resolution:	1280 × 960 pixels or 640 × 480 pixels
Capture Rate:	1 - 30 frames/sec
Cone Angle:	45 degrees
Usable Cone Area:	140 mm over 360 deg. Width: 30 - 60 mm
Lens MTF:	Megapixel resolution
Camera Interface:	USB 3.0

Camera Shielding: 2

С

Camera top and sides:	12.7 mm thick bismuth and
	polymer composite
CD Lifetime:	~1,500 X-ray beam hours

Camera Module Physical:

$H \times W \times D$:	$27 \times 19 \times 67$ cm
Weight:	7.8 kg (17.2 lbs)
Enclosure Material:	Aluminum and Plastic

Lynx PT (spot positioning and size)

Technical specs


- Scintillation screen thickness: 0.4 mm
- Energy range: 60Co at 25 MV in photons /4 to 25 MeV in electrons/ 230 MeV Protons
- Active surface area: 300 x 300 mm² (600 x 600 pixels)
- Pixel size: 4.65 x 4.65 um²
- Effective spacial resolution: 0.5 mm
- Geometric distortion: ≤ 0.3 mm for the central zone of $\leq 280 \times 280$ mm²: ≤ 0.8 mm elsewhere
- Image acquisition: CCD camera
- Video camera: 1024 x 1024, 12-bit resolution
- Sampling time: 7 images / secondes
- Dose linearity within +/- 1.5%
- Spot sigma: Variation < 100 um</p>

Dimensions: 360 x 370 x 600 mm

Weight: 11 kg

Auxiliaries

Calibration plate for Lynx PDR1602

QA – DAILY (20-30 minutes)

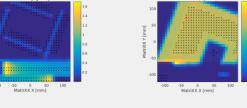
performed by RTT (single device)

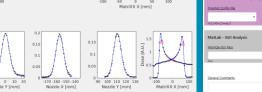
exercises all aspects of patient treatments, (imaging, registration, PPS, delivery) includes safety checks (AV, door interlocks, beam ON indicator, beam pause) measure and trend R80, W80, output, output/entrance, flatness, x, y, Δx , $\Delta y \sigma_x$, σ_y , dark current

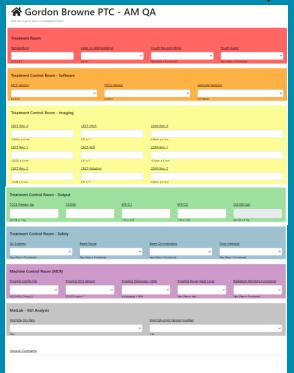
M-1 Beam range $-\pm 0.5$ mm (O-2)

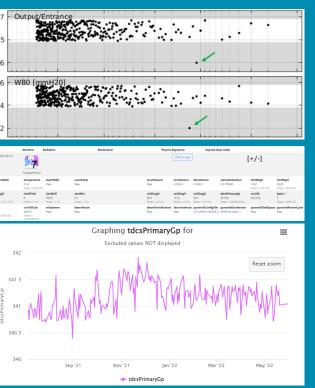
M-2 Depth-dose $W_{80-80} - \pm 1.0 \text{ mm}$ (O-2)

M-3 Dose constancy – $\pm 1.5\%$ (O-2, O-4)


M-4 Entrance dose relative to output – $\pm 1.5\%$ (O-2)

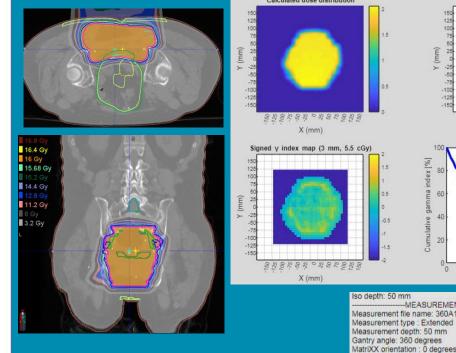

M-5 Spot position – $\pm 1.2 \text{ mm}$ (O-2)

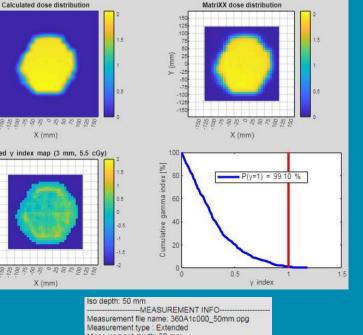

- M-6 Spot size (sigma) $\pm 10\%$ (O-2)
- M-7 Field flatness, (max-min)/(max+min) $\pm 2\%(\text{O-2})$
- M-8 Dose due to dark current undetectable (O-2) $\,$
- M-9 Dose monitoring accuracy (DCEU) ± 0.05 Gp (O-2)
- M-10 Delivery of multilayer irradiation functional (O-6)
- M-11 Imaging and laser coincidence at setup position and isocenter $\pm 3~\mathrm{mm}$ (O-8)
- M-12 Patient positioning and imaging coordinate coincidence $\pm 1~\mathrm{mm}~\mathrm{(O-9)}$
- M-13 Imaging and beam coordinate coincidence $\pm 1 \text{ mm}$ (O-10, O-9)
- M-14 Positioning/repositioning (i.e. constancy of registration correction vector when the phantom is not centered) $\pm 1~\rm{mm}$ (O-10)
- M-15 Door interlock stops beam functional (O-11)
- M-16 Door closing electric eye functional (O-11)
- M-17 Patient distress buzzer functional (O-11)
- M-18 CCTV and audio monitors functional (O-11)
- M-19 Radiation area monitors functional (O-11)
- M-20 Beam on indicators inside and outside the treatment area functional (O-11)


M-21 Collision interlocks – functional (O-11)

QA – MONTHLY (12-15 hours over 4 weeks, 8-10 hours in one session)

performed by MPA


backup morning QA procedures Matrixx cross calibration (A1) dose uniformity (Matrixx) gamma consistency (Matrixx) range uniformity (Matrixx and SW) SOBP uniformity (Zebra) Winston-Lutz mechanical checks (translations, rotations) couch sag laser alignment image quality (Leeds & Cat phantoms) HU, LP/mm, geometry safety checks range shifter detection, emergency stops, door open, CBCT guard, wall laser guards, **PPS** and accessories

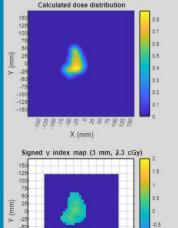


QA – FIELD SPECIFIC (10-20 minutes, 3 irradiations, G_{0-deep} , $G_{0-shallow}$, G_{TX})

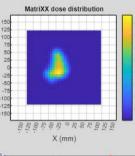
performed by MPA

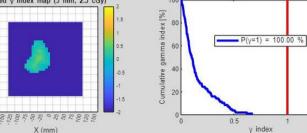
-ANALYSIS INFO-

Gamma criterion: 3 mm, 3 % of 1.821 Gy, with 10 %

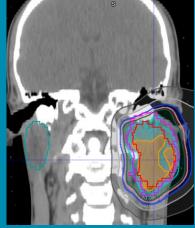

threshold

User dose shift : 0 %


User X shift: 0 mm


User Y shift: 0 mm

Room: Lunder


X (mm)

Iso depth: 50 mm -MEASUREMENT INFO---Measurement file name: 230A1c180_50mm.opg Measurement type : Extended Measurement depth: 50 mm Gantry angle: 230 degrees MatriXX orientation : 0 degrees -ANALYSIS INFO--Gamma criterion: 3 mm, 3 % of 0.761 Gy, with 10 % threshold User dose shift : 0 % User X shift: 0 mm User Y shift: 0 mm Room: Lunder

1.5

QA - ANNUAL

Performed by QMP

One dead and a like a like a like		
Standard output calibration	$\pm 2\%$	TRS 398 calibration
Range verification	$\pm 1 \text{ mm}$	Measured at 90% depth dose
SOBP width	-	Width between proximal and distal 90% ^a depth dose
Depth doses verification	±2%	Maximum difference at any depth
Lateral profile penumbra	$\pm 2 \text{ mm}$	80-20% for selected beams at different depths\$dummy\$and gantry angles
Range uniformity	$\pm 0.5 \text{ mm}$	Corresponding to depth of 90% dose at points off axis
Field symmetry	$\pm 1\%$	Measured at different gantry angles (relative to baseline)
Field flatness	±2%	Measured at different gantry angles (relative to baseline)
Spot position	1mm/0.5 mm	Absolute/relative
Spot size	$\pm 10\%$	At different gantry angles
Uniformity of spot shapes ^c	2% & 2 mm	Multiple gantry angles. Gamma: $\geq 90\%$ of pixels passing
Inverse square correction	$\pm 1\%$	From effective source position
Monitor chambers:		
Linearity	$\pm 1\%$	
Reproducibility	$\pm 2\%$	
Minimum/Maximum dose/spot	Functional	Minimum and Maximum are determined by manufacturer
End effect	1 min MU	For PBS: minimum deliverable MU
SOBP factors	$\pm 2\%$	
Range shifter factors	$\pm 2\%$	
Relative output factors	$\pm 2\%$	
Verification of daily QA equipment	$\pm1\%$ and/or $\pm~1mm$	Compared with ADCL calibrated equipment
	$\pm 2\%$	Ionization chambers used for daily and monthly against standard ADCL chamber
Cross calibration of field chambers		
Cross calibration of field chambers MLC leakage		
		Consisient with baseline
-MLC leakage		
-MEC leakage 		Consistent with baseline
MLC leakage interleaf Leaf end Shielding support		Consistent with baseline
-MEC leakage 		Consistent with baseline
MLC leakage interleat Leaf end 		Consistent with baseline
MLC leakage mericai — Leaf end — Skielding support Mechanical (all delivery systems) Coincidence of proton and x-ray field		Consistent with baseline Consistent with baseline Consistent with baseline
M.C leakage Interfeat Leaf end Shickling support Mechanical (all delivery systems) Coincidence of proton and x-ray field Coincidence of proton and light field		Consistent with baseline Consistent with baseline Consistent with baseline
M.C leakage Interleaf Shielding support Mechanical (all delivery systems) Coincidence of proton and ight field Coincidence of proton and light field Cantry angle accuracy Gantry socentricity		Consistent with baseline Consistent with baseline Consistent with baseline
M.C. leakage Imerical Shielding support Mechanical (all delivery systems) Coincidence of proton and x-ray field Coincidence of proton and light field Gantry angle accuracy		Consistent with baseline Consistent with baseline Consistent with baseline If light field is used for setup Diameter of a circle
MLC leakage merie ai — Seickling support Mechanical (all delivery systems) Coincidence of proton and ight field Coincidence of proton and light field Gantry angle accuracy Gantry scentricity Gantry x-ray isocentricity		Consistent with baseline Consistent with baseline Consistent with baseline If light field is used for setup Diameter of a circle Diameter of a circle Weight limit and position as specified by
M. C leakage interleaf Shielding support Mechanical (all delivery systems) Coincidence of proton and stray field Coincidence of proton and light field Gantry angle accuracy Gantry isocentricity Gantry x-ray isocentricity Couch sag		Consistent with baseline Consistent with baseline Consistent with baseline If light field is used for setup Diameter of a circle Diameter of a circle
M.C leakage Interleaf Shielding support Mechanical (all delivery systems) Coincidence of proton and sray field Coincidence of proton and light field Gantry angle accuracy Gantry isocentricity Gantry x-ray isocentricity Couch sag Snout extension accuracy		Consistent with baseline Consistent with baseline Consistent with baseline If light field is used for setup Diameter of a circle Diameter of a circle
MLC leakage Interleaf Leaf end Shidding support Mechanical (all delivery systems) Coincidence of proton and light field Gantry angle accuracy Gantry isocentricity Gantry isocentricity Couch sag Snout extension accuracy Snout extension accuracy		Consistent with baseline Consistent with baseline Consistent with baseline If light field is used for setup Diameter of a circle Diameter of a circle Weight limit and position as specified by manufacturer
MLC leakage Interleat Leaf end Shielding support Mechanical (all delivery systems) Coincidence of proton and x-ray field Coincidence of proton and light field Gantry angle accuracy Gantry isocentricity Gantry x-ray isocentricity Couch sag Snout extension accuracy Snout rotaxional accuracy CBCT isocentricity		Consistent with baseline Consistent with baseline Consistent with baseline If light field is used for setup Diameter of a circle Diameter of a circle Weight limit and position as specified by manufacturer
MLC leakage Interleaf Leaf end Shielding support Mechanical (all delivery systems) Coincidence of proton and x-ray field Coincidence of proton and light field Gantry angle accuracy Gantry isocentricity Couch sag Snout extension accuracy Snout extension accuracy CBCT isocentricity Imaging System functionality		Consistent with baseline Consistent with baseline Consistent with baseline If light field is used for setup Diameter of a circle Diameter of a circle Weight limit and position as specified by manufacturer Diameter of a circle

Dosimetry

AAPM TG224

- + summarize monthly/daily QA reports
- + summarize ad hoc repair/upgrade validation reports
- + IROC TLD
- + optical tracker checks
- + couch edge interlock checks
- + laser guard checks
- + 2.5D imaging verification
- + immobilization and beam modifying device WET
- + n° activation, chilled water surveys and review badge readings
- + verify safety interlocks including redundant MU stops
- + TPS verification of stoichiometric HU \rightarrow RSP
- + TPS end-to-ends tests
- + TG179 & 142 imaging
- we have not implemented gating, surface imaging, apertures so these are not currently checked as part of annuals

SYSTEM SUMMARY

	Burr (IBA multi-room circa 2001)	Lunder Proton (Protom single room)	
Gantry rotation	0° to 360°	180° to 360° and 9° over-travel	
Irradiation time, 1L 1.5 Gy	4 to 5 minutes	Same	
Field size	30.5 x 28 cm	27 x 31 cm	
Proton range	6.9 to 31.5 g/cm ²	3.9 to 31.5 g/cm ² (later 37.5 g/cm ²)	
Couch translation constraints	Nozzle cover and snout	Burr constraints plus: room walls, optical tracker volume, and couch joint	
Beam size	8 to 15 mm	3.3 to 6.7 mm	
Imaging	Gantry mounted 2D/2D Manual anatomic point-based registration Manual transfer of correction vector	Fixed 2D/2.5D, Couch mounted CBCT Automatic registration Automatic transfer of correction vector	
Patient weight	400 lbs	310 lbs	
Apertures	Yes	No*	
Gating	Motion management strategy under evaluation. Gating capabilities available on both.		
Vision RT	Yes	Upgrade later	

PROBLEM TRACKING

CHALLENGES AND OPPORTUNITIES

- vault built before vendor and product selection
- transport and delivery of very large gantry, accelerator... components
 - through a very active medical facility
 - limited space for transport and delivery
 - below ground level
- accelerator and treatment rooms
 - next to Linac vaults treating patients
 - very small, limiting system implementations options
 - couch mounted CBCT
 - need for secondary PPS tracking
- shielding (access to other departments, Linac radiation, supplemental in tight spaces)
- cutting of concrete with 13 floors above
- connection to building infrastructure while they are being used
- modular components requires significant installation sequencing coordination
- complex sub-system configuration and communication
- resource allocation with minimal increases
- 1st generation systems requires extensive resources to troubleshoot, maintain and upgrade...

CHALLENGES AND <u>OPPORTUNITIES</u>

- achieve goals
 - providing backup redundancy for proton patients
 - increase capacity and patient access
- improve technology and safety
- customize workflows and system interaction
- work with vendors to solve challenges, improve workflows
- understand subtle differences between systems