Intra-Tumoral Infusion of P-32 Radiolabeled Microspheres for Localized Radiotherapy of Pancreatic Tumors

William D. Erwin, MS, FAAPM
Senior Medical Physicist
Department of Imaging Physics
Financial Disclosure

Clinical research grant support from Oncosil Medical Ltd.
Oncosil™ (Oncosil Medical Ltd.)

Single-use brachytherapy device

- indicated for treatment of locally advanced unresectable pancreatic cancer (LAPC)
- in combination with gemcitabine-based chemotherapy
- Approved in: EU, UK, Hong Kong, Singapore, Malaysia, New Zealand, Switzerland
- Clinical trials in the US completed
Oncosil

Silicon nanoporous microparticles (on the order of 30 µm, but variable)

• Highly-doped with phosphorous (^{31}P)
• Exposed to neutrons (nuclear reactor): $^{31}\text{P}(n,\gamma)^{32}\text{P}$
Phosphorus-32

- Pure β^- emitter
- $E_{avg} = 0.695$ MeV, $E_{max} = 1.711$ MeV
- Half-Life: 14.27 days
- β^- range (mm): 2.76 (E_{avg}), 8.14 (E_{max})

- \sim100% (macroscopic) local energy deposition

 (1.11E-13 Gy-kg/Bq-s)

Oncosil Prescription

100 Gy (±20%)

- Assumptions
 - 100% local energy absorption and uniform dose (i.e., uniform microparticle distribution throughout tumor)
 - 32P physical decay only (i.e., no biologic clearance)
 - 1.03 g/cc
 - Tumor volume: 14 to 113 cc (shortest diameter: 2 cm, longest diameter: 6 cm)

\[
100 \text{ Gy} = 1.11 \times 10^{-4} \text{ Gy-g/MBq-s} \times \text{MBq}_{\text{inj}} \int_0^\infty e^{-\lambda t} \, dt / M_{\text{tumor}}(\text{g}); \quad \lambda = 5.62 \times 10^{-7} \text{ s}^{-1}
\]

\[
\text{MBq}_{\text{inj}} = 0.5215 \times V_{\text{tumor}}(\text{cc}) = 100 \times V_{\text{tumor}} \times 1.03 \times 5.62 \times 10^{-7} / 1.11 \times 10^{-4}
\]

- 32P concentration in diluent: 6.6 MBq/ml ($V_{\text{Oncosil}} = \text{MBq}_{\text{inj}} / 6.6$)
 - $V_{\text{Oncosil}} = 8\%$ of V_{tumor} ($\text{[MBq}_{\text{inj}} / 6.6] / V_{\text{tumor}} = 0.079$ rounded off to 0.08)
Oncosil Preparation

250 MBq 32P calibrated on reference day (0)

Day of implantation (Di): -2 to +7

Diluent ml: $7.0e^{ln(2)Di/14.27}$

$V_{\text{Oncosil}} = 0.08 \times V_{\text{tumor}}$

$V_{\text{tumor}} = 14$ to 113 cc

$V_{\text{Oncosil}} = 1.1$ to 9 ml
Oncosil Implantation (EUS-guided)

- echoendoscope (EES) guided to stomach or duodenum (whichever provides best access to the tumor)
- 22 gauge EUS guided FNA needle loaded into EES biopsy channel and advanced through gastric wall and into the tumor
- 3-way Luer lock tap and Oncosil syringe attached to FNA needle
- Slow infusion (visualized with EUS), followed by saline flush (1.5 ml)
- With EES in stomach, 3.5 ml saline flush
- EES + needle withdrawn, tip rinsed with water (50 ml) over radioactive waste bag, needle placed in radioactive waste container

Image courtesy of Oncosil Medical Ltd.
Oncosil Implantation: Example Images

pre-Tx contrast CT of tumor

endoscopic US pre-infusion

endoscopic US post-infusion (Oncosil “blush”)

Oncosil Post-Therapy Imaging

Secondary bremsstrahlung x-ray

- 32P is a pure beta emitter (no photon emissions)
- Manufacturer-recommended imaging
 - Post-implant time points: \leq 4 hours and 7 days
 - Energy window: 75 keV±30% (52.5 – 97.5 keV)
 - Collimation: medium energy
 - Whole body planar (WB): 10 cm/min
 - SPECT: 90–120 views/360°, 30 sec/view, 128x128 matrix
 - CT: site’s standard-of-care for SPECT/CT
- Tumor activity between time points should:
 - decrease over time according to 32P T½ (14.27 d)
 - not redistribute (i.e., biodistribution should not change)
Oncosil Post-Therapy Imaging

4-h post-implant

WB anterior posterior
SPECT transverse slice coronal slice

7-d post-implant
Oncosil Bremsstrahlung Imaging Limitations

- 32P activity in the WB and SPECT images is a tiny “island” in an “ocean” of background (i.e., there is a complete lack of anatomical information and, thus, localization)

- Patient (e.g., breathing) motion
 - during WB and SPECT scanning, between the SPECT and CT scans, and during the CT scan

- Image registration is difficult and questionable
 - Single, small “island” in the SPECT, versus tumor + rest of pancreas (similar HU values) + a lot of other anatomy in the CT
 - Motion between SPECT and CT

- The SPECT images are low-count, and non-quantitative (i.e., counts, not Bq or Bq/ml)

A better method of imaging the Oncosil microparticle distribution is needed
Oncosil – our experience

OncoPac-1 Pilot Study

In combination with gemcitabine or gemcitabine+nab-paclitaxel in subjects with unresectable LAPC

<table>
<thead>
<tr>
<th>Patient</th>
<th>Baseline Tumor Volume</th>
<th>Survival Post-Oncosil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient 1</td>
<td>23.2 cc</td>
<td>~1.5 y</td>
</tr>
<tr>
<td>Patient 2</td>
<td>31.5 cc</td>
<td>~6 m</td>
</tr>
<tr>
<td>Patient 3</td>
<td>8.44 cc</td>
<td>unknown (returned to S. Africa post-Tx)</td>
</tr>
<tr>
<td>Patient 4</td>
<td>52.5 cc</td>
<td>~2 y</td>
</tr>
</tbody>
</table>
Oncosil – our experience

Patient 2 (31.5 cc)

Patient 3 (8.44 cc)

Patient 4 (52.5 cc)
Oncosil – our experience

Week 0 volume is pre-treatment baseline
Oncosil – outcomes

PanCO international, multi-center, single-arm pilot study (3/2017 - 6/2018)

• 42 patients with unresectable LAPC (Australia, Belgium, UK)
• Oncosil with Gemcitabine+Nab-Paclitaxel (34) or FOLFIRINOX (8)

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Baseline Tumor Volume</td>
<td>24.35 cc (range: 7.9–68.7)</td>
</tr>
<tr>
<td>Partial Response</td>
<td>13 (31%)</td>
</tr>
<tr>
<td>Stable Disease</td>
<td>29 (69%)</td>
</tr>
<tr>
<td>Overall Response Rate</td>
<td>13 (31%)</td>
</tr>
<tr>
<td>Local Disease Control at 16 weeks</td>
<td>38 (91%)</td>
</tr>
<tr>
<td>Median Progression-Free Survival</td>
<td>9.3 months (32.3% 1-year rate)</td>
</tr>
<tr>
<td>Median Overall Survival</td>
<td>16.0 months (64.0% 1-year rate)</td>
</tr>
<tr>
<td>Median tumor volume change from baseline</td>
<td>-52% (range: +11% to -90%)</td>
</tr>
</tbody>
</table>

Ross P et al. Abstract O-1, ESMO World Congress on Gastrointestinal Cancer 2020
Oncosil – outcomes

PanCO vs. state-of-the-art standard-of-care (literature review)

- SoC therapy: chemo (CT) or induction chemo (ICT) + consolidated chemoradio (CCRT)

<table>
<thead>
<tr>
<th></th>
<th>PanCO</th>
<th>CT</th>
<th>ICT+CCRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median PFS in months [95% CI]</td>
<td>9.3 [7.2, 12.2]</td>
<td>6.6 [6.2, 7.8] (27 trials) p=0.010</td>
<td>9.1 [7.6, 9.3] (16 trials) p=0.227</td>
</tr>
<tr>
<td>Median OS in months [95% CI]</td>
<td>16.0 [11.1, nc]</td>
<td>12.7 [11.9, 13.6] (34 trials) p<0.001</td>
<td>12.6 [12.2, 14.0] (20 trials) p<0.001</td>
</tr>
<tr>
<td>One-year % survival [95% CI]</td>
<td>64.0 [47.5, 76.5]</td>
<td>50.4 [45.3, 55.5] (34 trials) p=0.013</td>
<td>55.2 [49.4, 60.9] (20 trials) p<0.001</td>
</tr>
</tbody>
</table>

Allerdice S et al. Abstract P-260, ESMO World Congress on Gastrointestinal Cancer 2020
Oncosil – summary

• A novel, direct-infusion unsealed brachytherapy device for unresectable LAPC
• Feasibility of EUS-guided delivery has been demonstrated
• In combination with gemcitabine+nab-paclitaxel or FOLFIRINOX
 • appears to confer additional benefit compared to SoC CT alone and ICT+CCRT
• Limitations
 • Uniform distribution, and, thus, uniform dose, is assumed (not the case in reality)
 • Dose distribution corresponding to “uniform 100 Gy” will vary from tumor to tumor
 • Aside from live EUS, visualization of implant localization is difficult
 • “hot spot” SPECT/CT insufficient (weak bremsstrahlung signal, SPECT-CT misregistration)
 • method allowing actual particle distribution visualization (and voxel dosimetry?) is needed
References

Oncosil Medical Ltd. Web site (https://www.oncosil.com/) (links to scientific meeting posters and publications found there)
Thank you!

Questions?

Contact: werwin@mdanderson.org