Image Quality Assessment Methods for Photon Counting CT

Adam Wang
Stanford University

July 13, 2022
Acknowledgements

Research support:
- GE Healthcare
- Siemens Healthineers
- Varex Imaging
- NIH R21EB030080
Outline

• Spatial resolution
• Artifact reduction
• Characterizing noise
• Detective quantum efficiency
• Detectability
Ultra high resolution

~2x higher spatial resolution than conventional CT

Leng et al, Radiographics 2019

Coronary Stent

EID

PCD
Ultra high resolution

Conventional CT

In vivo: Inner ear

PC CT

Danielsson et al, PMB 2021

AAPM Annual Meeting 2022
Spatial resolution: MTF, SSP

Direct conversion detectors have less charge spread than optical photons in scintillator

Modulation transfer function (MTF) characterizes CT spatial resolution (typically in-plane)
- High-resolution (HR) mode: Limiting spatial resolution of 0.125 mm (cutoff frequency 40 lp/cm)

Section sensitivity profile (SSP) quantifies longitudinal spatial resolution
Other considerations for spatial resolution

EIDs can have smaller pixels but need septa in scintillator that reduce fill factor

Comb filter increases EID resolution but blocks x-rays at detector → increases noise

Need smaller focal spot (while ideally keeping mA) and higher angular sampling → lots more raw data!

MTF assumes linear, stationary system

Leng et al., JMI 3(4), 043504 (2016)
Artifact reduction

PCCT robust against beam hardening and metal artifact
Can quantify shading/streak artifact – object specific

EID

PCD

Leng et al, Radiographics 2019
Dose efficiency

Dose efficiency important part of grayscale and spectral imaging performance
For fixed dose, how does noise compare? Or vice versa
Example: Traditional single contrast / two-phase scan or two contrast / single scan?
Latter has no motion issues, but increases noise by >200%

Additional basis materials increase noise

Estimation theory tells us that increasing the dimensionality increases the variance not only of the parameter added but also of all the lower dimension parameters.

Fig. 2. The variance for the soft tissue and bone A-vector components as a function of photon number with two and three dimension processing. The third basis function was the attenuation coefficient of adipose tissue. The left panel shows the variance of $A_{\text{soft tissue}}$ and the right panel is the variance of A_{bone}.

Fig. 3. MD correctly separates adipose but much higher noise.

Alvarez, Med Phys 40 (11) 2013

AAPM Annual Meeting 2022
Characterizing noise

Noise power spectrum (NPS) captures noise magnitude & texture

Average or peak NPS frequency often used to compare NPS shape

Assumes noise is stationary – not necessarily true for iterative / deep learning reconstruction

Dose savings of 19% at matched image resolution when acquired with higher resolution pixels (2nd vs 1st col)

Higher resolution noisier, as expected (3rd vs 2nd col)

Pourmorteza et al., Invest Radiol 2018;53: 365–372
Noise reduction

- **Noise reduction introduces non-linear behavior**
- Noise in MD is highly correlated – more of one material is compensated by less of other material(s), and vice versa
- Suppress anti-correlated noise in basis images
- Additional regularization in projection domain or image domain
- Summed image as prior
- Structural similarities between basis material and energy bin images
- Volume conservation
- Joint MD and reconstruction
- Deep learning image reconstruction

Schmidt et al, IEEE TMI 36 (9) 2017
Cramér-Rao Lower Bound (CRLB)

CRLB propagates uncertainty from one domain (binned counts) to another (material decomposition)

Minimum covariance matrix (best performance) for unbiased estimator

Useful for comparing detector or system design

Requires probability distribution of counts, often approximated as Gaussian with mean m, covariance Σ for object t

Fisher information:

$$F_{ij}(t) = \left(\frac{\partial m}{\partial t_i}\right)^T \Sigma^{-1} \left(\frac{\partial m}{\partial t_j}\right) + \frac{1}{2} \text{tr} \left(\Sigma^{-1} \left(\frac{\partial \Sigma}{\partial t_i}\right) \Sigma^{-1} \left(\frac{\partial \Sigma}{\partial t_j}\right)\right)$$

CRLB:

$$C(t) = F^{-1}(t)$$

Diagonal elements are minimum variance of each material, off-diagonal are correlations

Used in original dual energy paper by Alvarez & Macovski (PMB 1976)
Example CRLB analysis

Predict noise variance of water MD & VM (60 keV) tasks
Ideal detector vs realistic energy response (Si 60 mm, CdTe 1.6 mm)
How do the number of energy bins affect noise?
Noise higher for realistic PCDs relative to ideal PCD, especially for spectral task
More bins reduces noise, especially for Si PCD

Wang et al., WE-G-201-4, AAPM 2022
Detective Quantum Efficiency (DQE)

DQE is a comprehensive metric of detector/system performance over all frequencies f.

$$DQE(f) = \frac{\text{SNR}_{\text{out}}^2(f)}{\text{SNR}_{\text{in}}^2(f)} \propto \frac{\text{MTF}^2(f)}{\text{NPS}(f)}$$

DQE(0) is often easier to evaluate—reflects large-area tasks (“large” compared to spatial correlations caused by cross talk).

Cascaded systems analysis helps create DQE models by analyzing individual physical processes that lead to signal creation:

- Stochastic conversion of x-ray photons to secondary quanta
- Cross talk from characteristic/scatter photons
- Depth-dependent charge collection
- Aperture, sampling, additive noise, thresholding
Spatial-Spectral Correlations

NPS (and DQE) complicated by spatial-spectral correlations from:

- Charge sharing – charge clouds collected by 2 or more pixels
- Cross talk from secondary photons (K fluorescence in CdTe, Compton scattering in Si)

Effects include:

- Incorrect energy assignment
- Incorrect counts, including undercount (signal is no longer above the trigger threshold)
- Overcount (multiple pixels have signal above the trigger threshold)
- Reduced spatial resolution (counts in neighboring pixels)
- Spatial-spectral correlations between energy bins in different pixels

Reduces DQE, especially for spectral tasks
DQE for comparing CdTe & silicon (simulation study)

Detection task: determine whether a feature of specified frequency content and material composition is present or absent in an image

- CdTe > Si for iodine detection

Quantification task: measure the amount of a given basis material

- Si generally > CdTe for iodine quantification
- CdTe impacted by increased charge sharing & fewer bins

All results ignore pileup

Persson et al., J. of Medical Imaging, 7(4) (2020)
Measuring detector DQE

Task-independent DQE

Extension of established DQE methods:
- Measure MTF of each energy bin
- Measure NPS of each energy bin, as well as cross-bin NPS

DQE depends on count rate

Relative performance of PCD > EID at low count rates due to lack of electronic noise
Worse at high count rates due to pileup

Comprehensive DQE model is still needed to combine spatial–spectral effects with pileup
Detectability in CT images

Detectability metric incorporates system’s spatial resolution (MTF), noise power (NPS), and imaging task (W) across all frequencies f

Example task: Iodinated blood sphere with 1 mm diameter and 5 mg/ml iodine

Can normalize by dose to compare different spectra

$$d'^2 = (\Delta \mu)^2 V^2 \int \int \left| \frac{\int MTF_{3D}(f_x, f_y, f_z) W(f_x, f_y, f_z) df_z}{\int NPS_{3D}(f_x, f_y, f_z) df_z} \right|^2 df_x df_y$$

→ 60 kVp optimal for iodine task for pediatric size
→ Increases detectability by up to 70% over EID

Detectability depends on observer

Ideal observer: uses all available information at all frequencies

Hotelling observer: optimum linear discriminant
- Ideal when signal known exactly / background known exactly
- Can also be used when signal known statistically

Channelized Hotelling observer: Includes spatial-frequency-selective channels
- Gabor filters can be used to represent the human visual system
- Helps determine lowest detectability of any signal (e.g., iodine concentration)

Human observer: Ultimate test, but time consuming

Rigie & La Riviere, IEEE NSS MIC 2012
Reader study: phantom

Compared spectral PCCT vs dual-layer CT with iterative recon levels (Philips iDose4)
Nonprewhitening observer model with eye filter (NPWE) detectability for ground-glass nodule and solid nodule tasks
Correlates with human observer image quality preferences

Si-Mohamed et al., Eur Rad (2022) 32:524–532
Reader study: clinical

PCCT + iterative reconstruction (Siemens QIR) reduces noise

Reader study showed improved image quality and liver lesion conspicuity

Clinical image, clinical task

Sartoretti et al., Radiology 2022; 303:339–348
Summary

- PCCT offer vast potential, including higher spatial resolution, unique spectral information, and higher dose efficiency
- Potential for spectral tasks is greater than grayscale tasks, but spectral tasks tend to be more sensitive to nonidealities than grayscale tasks
- Performance analysis tools help quantify image quality and the impact of nonidealities
- Metrics needed for range of tasks & reconstruction methods

Questions?

Contact: adamwang@stanford.edu