

Overview of the DL-spectral CT Grand Challenge

Organizers: Emil Sidky and Xiaochuan Pan

The AAPM Working Group on Grand Challenges

Inverse problems in Imaging

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 68, NO. 6, JUNE 2021

Do CNNs Solve the CT Inverse Problem?

Emil Y. Sidky[®], *Member, IEEE*, Iris Lorente[®], Jovan G. Brankov[®], *Senior Member, IEEE*, and Xiaochuan Pan[®], *Fellow, IEEE*

Inverse problems in Imaging

Measurement model:
$$y = \mathcal{M}(x)$$

Inverse of Measurement model:
$$\mathcal{M}^{-1}\mathcal{M}(x)=x$$
 .

Empirical studies with digital phantoms, root-mean-square-error (RMSE) as the metric

Inverse problems in Imaging

 $\mathcal{M}_{\text{phys}}(x) = \mathcal{M}(x) + \epsilon_{\text{det}}(x) + \epsilon_{\text{noise}}(x)$ Measurement model

$$\mathcal{M}^{-1}\mathcal{M}_{\text{phys}}(x) = x + \delta$$

inverse

 $\mathcal{M}^{-1}\mathcal{M}(x) = x$

stability $\|\mathcal{M}^{-1}(y_1) - \mathcal{M}^{-1}(y_2)\| \le \epsilon \|y_1 - y_2\|$

DL-sparse-view CT (2021 AAPM Grand Challenge)

128 views x 1024 bins (g)

2D fan-beam CT 360 degree scanning noiseless sinogram

128 view FBP

512x512 image (f)

$$g = Rf$$

R partially known4,000 training cases provided

2021 DL-sparse-view CT winners

Martin Genzel

Jan Macdonald

Maximillian Maerz

Team: Robust and Stable

Institution: Technical University of Berlin

Utrecht University

Oral presentation at ICML 2022 https://arxiv.org/abs/2206.07050

SPECIAL REPORT

Report on the AAPM deep-learning sparse-view CT grand challenge

MEDICAL PHYSICS

The International Journal of Medical Physics Research and Practice

Emil Y. Sidky 🔀, Xiaochuan Pan

First published: 26 January 2022 | https://doi.org/10.1002/mp.15489

2021 DL-sparse view CT

39

IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 1, NO. 1, MAY 2020

Deep Learning Techniques for Inverse Problems in Imaging

Gregory Ongie, Ajil Jalal, Christopher A. Metzler, Richard G. Baraniuk, Alexandros G. Dimakis, and Rebecca Willett
 TABLE II

 Major Categories of Methods Learning to Solve Inverse Problems Based on What Is Known About the Forward Model A and the Nature of the Training Data, With Examples for Each. Details Are Described Throughout Section IV

Circular, fan-beam CT geometric parameters and line-intersection weights NOT provided

	Supervised with matched (x, y) pairs	Trainfromunpairedx'sandy'spairedgroundtruthsandMeasurements)	Train from x's only (Ground truth only)	Train from y's only (Measure- ments only)
A fully known during training and testing (§4.1)	§4.1.1: De- noising auto- encoders [16], U-Net [78], Deep constant framelets [79] Unrolled optimiza- tion [80–83], Neumann networks	amounts to training from (x, y) pairs	amounts to training from (x, y) pairs	§4.1.2: SURE LDAMP [85, 86], [85, 86], Deep Basis Pursuit [87] [87]
A known only at test time (§4.2)	§4.2.2	§4.2.2	§4.2.1: CSGM [25], LDAMP [88], OneNet [22], Plug-and- play play [89], RED [90] [80]	§4.2.2
A partially known (§4.3)	§4.3.1	4.3.2: Cycle- GAN [91]	§4.3.3: Blind deconvolu- tion with GAN's [92–94]	§4.3.4: Ambi- entGAN [76], Noise2Noise [95], UAIR [96]
A unknown (34.4)	34.4.1. AU- TOMAP [97]	3-+.2	34.4.2	34.4.2

2022 DL-spectral CT

Known forward model Inverse problem solution unknown (optimization-based, DL-based, or hybrid)

Non-linear forward model that leads to non-convex optimization

Not too burdensome for participants 2D CT, 1000 training cases

Models fast kV-switching dual-energy Unregistered transmission measurements

DL-spectral CT Phantom model

Biomed. Phys. Eng. Express 7 (2021) 055021

https://doi.org/10.1088/2057-1976/ac1c64

Biomedical Physics & Engineering Express

PAPER

Fabrication of microcalcifications for insertion into phantoms used to evaluate x-ray breast imaging systems

Bahaa Ghammraoui¹ , Ahmed Zidan², Alaadin Alayoubi², Aser Zidan^{2,3} and Stephen J Glick¹

- ¹ Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, United States of America
- ² Division of Product Quality and Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, United States of America
- ³ University of Maryland, Baltimore County, Baltimore, Maryland, United States of America

Spectral CT model

$$I_w = \int s_w(E) \exp\left[-\mu_a(E)Px_a - \mu_f(E)Px_f - \mu_c(E)Px_c\right] dE$$

DL spectral CT objective: obtain tissue maps from kVp images, kVp transmission, or both

Transmission-to-Image approach

Image-to-Image approach

kVp images are shown in a [0.15,0.35] gray scale window. Note that they have streak and cupping artifacts. Also, the tissue contrasts are different for the low and high kVp images. In the image-to-image approach, the training data needs to be exploited to remove the artifacts; and the different contrast levels of the low and high kVp image training data then need to be exploited to estimate the tissue maps.

DL-spectral CT the inverse problem

$$I_w = \int s_w(E) \exp\left[-\mu_a(E)Px_a - \mu_f(E)Px_f - \mu_c(E)Px_c\right] dE$$

Data size: 3x512x512 (0.75 MB)

 $\sum_m x_m = 1$

 $0 \le x_m \le 1$

DL-spectral CT platform and schedule

MedICI Medical Imaging Challenge Infrastructure www.medici-challenges.org

Benjamin Bearce (programmer) Jayashree Kalpathy-Cramer (PI)

Schedule

March 17: release of training – 1000 datasets, known truth
March 31: validation phase – 10 datasets, unknown truth
May 17: testing phase – 100 datasets, unknown truth
June 1: challenge end

DL-spectral CT scoring

Ranking by average RMSE over 100 test cases three tissue maps for each case

Tie-breaker: Worst-case region of interest (ROI) RMSE ROI is 25x25 pixels Over all 100 cases

DL-spectral CT test phase results

		Results				
#	User	Entries	Date of Last Entry	RMSE 🔺	WC_ROI-RMSE	
1	GenweiMa	3	05/31/22	0.0000068 (1)	0.00000220 (1)	
2	huxiaoyu090	3	05/31/22	0.00000621 (2)	0.00009767 (2)	
3	kimhs369	2	05/31/22	0.00018666 (3)	0.00680786 (3)	
4	WashUDEAM	2	05/31/22	0.00025205 (4)	0.02440356 (4)	
5	dhlee91	1	05/31/22	0.00040848 (5)	0.02544221 (5)	
6	jaspernijkamp	3	05/31/22	0.00133719 (6)	0.04595653 (6)	
7	Duke_QIAL	2	05/30/22	0.00400783 (7)	0.05213956 (7)	
8	leekunpeng	3	05/25/22	0.00409590 (8)	0.07176514 (8)	
9	flutexu	1	05/26/22	0.00773430 (9)	0.08237529 (9)	
10	Z-VCT	2	05/31/22	0.01045535 (10)	0.10902996 (13)	
11	WangYZ	3	05/31/22	0.01067686 (11)	0.10916580 (14)	
12	duysal	1	05/31/22	0.01141161 (12)	0.09213256 (11)	
13	gopalakrishm	1	05/30/22	0.01184738 (13)	0.10020318 (12)	
14	satoru	2	05/24/22	0.01203003 (14)	0.08405824 (10)	
15	NJUP	3	05/30/22	0.01209367 (15)	0.11389498 (15)	
16	ZXRM	1	05/31/22	0.01453637 (16)	0.12020124 (16)	
17	Yang_Yoonjeong	3	05/29/22	0.33054769 (17)	0.81837457 (18)	
18	liuliu	1	05/31/22	0.40556404 (18)	0.79846686 (17)	

DL-spectral CT test phase results

DL-spectral CT runner up team

Institution: University of Texas Southwestern Medical Center

RMSE: 6.21 x 10⁻⁶ Worst case ROI RMSE: 9.77 x 10⁻⁵

DL-spectral CT winning team

Prof. Xun Jia

Institutions: Capital Normal University, Beijing

Southern University of Science and Technology, Shenzen

RMSE: 6.8×10^{-7} Worst case ROI RMSE: 2.2×10^{-6}

DL-spectral CT top 5

USERNAME	TEAM NAME	MEMBERS	INSTITUTIONS(S)	RMSE SCORE
GenweiMa	GM_CNU	Genwei Ma Xing Zhao	Capital Normal University, Beijing, China Southern University of Science and Technology, Shenzhen, China	6.8 x 10^(-7)
Huxiaoyu090	itorch	Xiaoyu Hu Xun Jia	University of Texas Southwestern Medical Center, Dallas	6.21 x 10^(-6)
kimhs		Hyeongseok Kim Seungryong Cho	Korea Advanced Institute of Science & Technology, Daejon, South Korea	1.19 x 10^(-4)
WashUDEAM	WashUDEAM	Tao Ge Maria Medrano Joseph A. O'Sullivan	Washington University, St. Louis	2.52 x 10^(-4)
dhlee91		Donghyeon Lee Katsuyuki Taguchi	Johns Hopkins University School of Medicine, Baltimore	4.08 x 10^(-4)

Acknowledgements

AAPM WGGC

Sam Armato Karen Drukker Lubomir Hadjiyski Nicholas Petrick Keyvan Farahani Reshma Munbodh Kenny Cha

AAPM HQ

Emily Townley

MedICI

Benjamin Bearce Jayashree Kalpathy-Cramer