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DL-sparse-view CT (2021 AAPM Grand Challenge)

128 views x 1024 bins (g)

2D fan-beam CT
360 degree scanning
noiseless sinogram

512x512 image (f)

g=Rf

R partially known
4,000 training cases provided
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2021 DL-sparse view CT
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Deep Learning Techniques for Inverse
Problems in Imaging

Gregory Ongie, Ajil Jalal, Christopher A. Metzler, Richard G. Baraniuk,
Alexandros G. Dimakis, and Rebecca Willett

MAJOR CATEGORIES OF METHODS LEARNING TO SOLVE INVERSE PROBLEMS BASED ON WHAT IS KNOWN ABOUT THE FORWARD MODEL .A AND THE
NATURE OF THE TRAINING DATA, WITH EXAMPLES FOR EACH. DETAILS ARE DESCRIBED THROUGHOUT SECTION IV
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2022 DL-spectral CT

Known forward model
Inverse problem solution unknown
(optimization-based, DL-based, or hybrid)

Non-linear forward model that leads
to non-convex optimization

Not too burdensome for participants
2D CT, 1000 training cases

Models fast kV-switching dual-energy
Unregistered transmission measurements
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QSOLVE INVERSE PROBLEMS BASED ON WHAT Is KNOWN ABOUT THE FORWARD MODEL A AND THE
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DL-spectral CT Phantom model

Adipose Fibroglandular Calcification
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Linear attenuation (cm™1)
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Fabrication of microcalcifications forinsertion into phantoms used
to evaluate x-ray breast imaging systems
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Spectral CT model

Ly

Adipose Fibroglandular Calcification
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DL spectral CT objective:
obtain tissue maps from kVp images, kVp transmission, or both

low kVp image high kVp image
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Adipose

Image-to-Image approach

kVp images are shown in a [0.15,0.35] gray scale
window. Note that they have streak and cupping
artifacts. Also, the tissue contrasts are different for the
low and high kVp images. In the image-to-image
approach, the training data needs to be exploited to
remove the artifacts; and the different contrast levels
of the low and high kVp image training data then need
to be exploited to estimate the tissue maps.
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DL-spectral CT
the inverse problem

= [ su(BYexp[-1ua(BYPxq — iy (EIPx; = no(EIPr] dE
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Liow and |high are not registered 1 Data size: 2x256x1024 (0.5 MB)
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Data size: 3x512x512 (0.75 MB)
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