Ultrasound elastography in obstetrics

Ivan Rosado-Mendez¹,², Helen Feltovich¹,³, Timothy J. Hall¹

Departments of Medical Physics¹ and Radiology², University of Wisconsin, Madison, WI
Intermountain Healthcare, Provo, UT³

School of Medicine and Public Health
UNIVERSITY OF WISCONSIN–MADISON
Disclosures

• Equipment loan and technical support from Siemens Healthineers and GE Healthcare
• Consultant for Siemens Healthineers
• Leadership roles in the Quantitative Imaging Biomarkers Alliance of the Radiological Society of North America
• Member of American Institute of Ultrasound in Medicine
• Consultant to the Society of Abdominal Radiology
Learning outcomes

1. Explain the motivation for using ultrasound elastography in obstetrics

2. Provide examples of strain and shear wave elastography in the uterus, placenta, and cervix

3. Identify possible ways in which you can contribute to advance the clinical application of ultrasound elastography in obstetrics
Review: Ultrasound elastography

Strain Elastography

Elastic modulus \(E = \frac{\text{Stress}}{\text{Strain}} \) Measured

Shear Wave Elastography

Long US pulse creates acoustic radiation force

Measured

Shear wave speed

\(SWS = \sqrt{\frac{E}{3\rho}} \)

Why elastography in obstetrics?

- Pregnancy and parturition require a delicate synchrony of physiological changes of maternal and fetal tissues, including their mechanical properties.
- Pathological alterations of these changes can increase the risk of complicated pregnancies.
- Elastography allows characterizing non-invasively these changes and monitoring them through gestation.

https://my.clevelandclinic.org/health/articles/22303-obstetrician
https://www.britannica.com/science/obstetrics
Muscular organ that houses the developing fetus and participates in fetal nourishment

Three layers forming the uterine wall:
 - Internal: endometrium
 - Medial: myometrium
 - External: Perimetrium

During pregnancy, the uterine wall expands and decreases in thickness while remaining in a passive non-contractile state maintained by elevated levels of progesterone

Hormonal changes close to term change the uterus to a contractile state to start labor
Uterus: application of elastography

- **Intended application:** Assessment of risk of uterine rupture in the context of trial of labor after Cesarean delivery

- **Study goal:** Evaluate the correlation between stiffness of lower uterine segment assessed with SWE (in vivo and ex vivo) and tensile stress-strain analysis (TSSA)

- **Findings:** Poor correlation between TSSA and in vivo SWE. Moderate to good correlations between TSSA and ex vivo SWE

- **Conclusion:** Further development needed before clinical translation

Pearson correlation of SWE [95% Confidence interval] with complex elastic modulus measured with ex vivo TSSA

<table>
<thead>
<tr>
<th></th>
<th>Siemens Acuson S3000 9L4</th>
<th>Siemens Acuson S3000 4C1</th>
<th>Philips Epiq 7G C5-1</th>
<th>Canon Aplio 500 375BT</th>
</tr>
</thead>
<tbody>
<tr>
<td>In vivo</td>
<td>0.16 [-0.33, 0.58], p=0.533</td>
<td>0.25 [-0.24, 0.64], p=0.315</td>
<td>0.19 [-0.25, 0.57], p=0.385</td>
<td>0.10 [-0.40, 0.56], p=0.696</td>
</tr>
<tr>
<td>Ex vivo</td>
<td>0.57 [0.18, 0.80], p=0.007</td>
<td>0.37 [-0.07, 0.69], p=0.10</td>
<td>0.22 [-0.22, 0.59], p=0.158</td>
<td>0.78 [0.48, 0.92], p<0.001</td>
</tr>
</tbody>
</table>

24 samples of women going through C-section
Placenta: anatomy and physiology

- Main link between fetus and mother
- Disc-shaped, sponge-like organ that connects to the fetus through the umbilical cord
- Formed by infiltration of fetal cells (trophoblasts) into the endometrium and remodeling of maternal spiral arteries
- Functions:
 - Maternal recognition of pregnancy
 - Implantation
 - Exchange of nutrients and gas
 - Immune protection
 - Endocrine action

https://www.ncbi.nlm.nih.gov/books/NBK551634/
https://www.ncbi.nlm.nih.gov/books/NBK538332/
Intended application: Evaluation of placental stiffness in the context of pre-eclampsia

Study goal: Quantification of placental stiffness in healthy controls and pre-eclamptic patients

Findings:

- Stiffness in 23 pre-eclamptic patients:
 - 26.36 ± 14.1 kPa 3rd trimester
- Stiffness in 24 healthy controls
 - 10.43 ± 7.6 kPa 3rd trimester
- Significant effects of body mass index (BMI)

Other studies: Edwards et al. confirmed confounding effects of BMI and gestational weight gain in uncomplicated pregnancies
Cervix: anatomy and physiology

- Cylindrical-shaped structure with central canal that connects uterus to vagina
- Highly organized collagenous composition provides mechanical strength to support growing fetus
- Gradually remodels during pregnancy towards a ripened state that allows a vaginal delivery
- Other components:
 - Smooth muscle
 - Fibroblasts
 - Epithelial cells
 - Blood vessels

Feltovich and Carlson, Seminars in Perinatology 2017, 41: 477-484
www.britannica.com
Cervix: strain elastography

- **Intended applications:**
 - ✓ Prediction of risk of premature labor
 - ✓ Assessing success of induction of labor

- **Main limitations:**
 - No consensus on how to standardize application of external compression
 - Limited to qualitative or semi-quantitative analysis due to unknown stress distribution
 - Lack of reference tissue to which cervical strain can be compared

- **Strategies to overcome:**
 - Use of internal physiological motion
 - Reference cap of known stiffness on transducer to serve as reference

Woźniak et al., Ginekologia Polska. 2015; 86(6):442-447

Prediction of spontaneous preterm labor with strain elastography applied between 18-22 weeks of gestation

<table>
<thead>
<tr>
<th>Technique</th>
<th>Area under the ROC curve (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strain elastography (red and yellow colors)</td>
<td>0.84 (0.76-0.92)</td>
</tr>
<tr>
<td>Cervical length</td>
<td>0.68 (0.78-0.69)</td>
</tr>
</tbody>
</table>

Swiatkowska-Freund and Preiss, International journal of women's health. 2017;9:245

Feltovich and Carlson, Seminars in Perionatology 2017, 41: 477-484
Cervix: shear wave elastography

- **Intended applications:**
 - ✓ Prediction of risk of premature labor
 - ✓ Assessing success of induction of labor

- **Hernández-Andrade et al., JPM, 2014**
- **Peralta et al., PLoS One, 2015**
- **Rosado-Mendez et al., UMB, 2017**
- **Carlson et al., UMB, 2018**
- **Rosado-Mendez et al., PMB, 2018**
- **O’Hara et al., UMB, 2019**
- **Carlson et al., TUFFC, 2014**
- **Muller et al. UMB, 2015**
- **Huang et al., TUFFC, 2015**
- **Carlson et al., UMB, 2018**
- **Carlson et al., Interface Focus, 2019**
- **O’Hara et al., JUM, 2020**

Rosado-Mendez and Hall, Quantitative Imaging in Ultrasound, AIP Publishing, 2021
Carlson et al., Interface focus. 2019;9(5):20190030
The cervix is not a homogeneous, isotropic, or purely elastic material

Structural heterogeneity

Viscoelastic components

Shear wave dispersion

- **27 Rhesus hysterectomy samples**
 - Cervical ripening induced in $n=13$ with 200 µg misoprostol

- **18 pregnant Rhesus macaques**
 - SWEI applied at weeks 10 and 23 of the 24.3-week-long gestation

Phase velocity slope (m s$^{-1}$ kHz$^{-1}$)

- **Wilcoxon $p=0.03$**
- **Linear mixed-effects model: $p<0.0001$**

Torres et al., Frontiers in Physics 2021, 15(8):606664
Challenges of ultrasound elastography in obstetrics

- Oversimplification of and misconceptions about the formation and interactions of acoustic and shear waves with tissue
- Limited understanding of physical, biological, and technical confounders
- Lack of standardized protocols, particularly regarding the application of external force in strain elastography
- Limited understanding of safety risks of the exposure of the fetus to acoustic radiation forces

World Federation of Ultrasound in Medicine and Biology

More preclinical studies investigating the impact of acoustic radiation forces on the fetus are needed to assess the ALARA (As Low As Reasonably Achievable) principle in the context of imaging techniques using acoustic radiation forces, like SWE

POSSIBLE WAYS TO CONTRIBUTE

• Connect with potential collaborators in obstetrics and establish effective communication channels

• Discuss advantages, limitations, and safety aspects of each elastography modality with obstetricians in the context of specific applications

• Design protocols for the application of elastography techniques, adopting metrology approaches that allow to identify sources of systematic error and variability
Thank you

rosadomendez@wisc.edu