Second Cancers from Radiotherapy Procedures

Stephen F. Kry, Ph.D., D.ABR.

Outline

- Radiation and cancer induction
- Medically exposed people
- Estimating risk of second cancers
- Minimizing the risk
Evidence of second cancers

- A-bomb
 - Most comprehensive cohort and most extensive studies
- Occupationally exposed
- Radiation accidents (Mayak)
- Medically exposed (Radiotherapy, also non-cancer radiation: peptic ulcers, tinea capitis)

A-bomb population

- ~120,000 people (Life Span Study)
- ~17,500 cancers (post 1958)
- 30% had doses 0.005 - 0.2 Gy
- 3% had doses >1 Gy
- Healthy population compared to Hiroshima or Nagasaki residents who lived far from the bomb site or were not in the city at the time of the bombing

Risks from A-bomb

Main findings:
- Significantly elevated risks of
 - Second cancers
 - Heart disease, stroke, digestive disease, respiratory disease (Preston et al, Radiation Research, 2003)
- Induced cancers are largest risk
 - 2/3 of the excess mortality
 - 440 solid cancer deaths and 250 noncancer deaths associated with radiation exposure (Preston et al, Radiation Research, 2003)
Cancer risk

- Significantly elevated risk for:
 - Oral cavity, esophagus, stomach, colon, liver, lung, non-melanoma skin, breast, ovary, bladder, nervous system, thyroid
- Consistent excess (not statistical)
 - Pancreas, prostate, kidney
- Radio-resistant organs:
 - Rectum, gallbladder, uterus
- Of 17,448 observed solid cancers (Price et al. 2007)
 - 96% carcinoma
 - 2% sarcoma

Attributable risk

- People get cancer normally!
- How much is the risk is elevated. Is it relevant?
- What fraction of the observed cancers are due to radiation?

<table>
<thead>
<tr>
<th>Dose categorya</th>
<th>Subjects</th>
<th>Person years</th>
<th>Cases Background</th>
<th>Excess</th>
<th>Excess</th>
<th>Excess</th>
<th>franke</th>
</tr>
</thead>
<tbody>
<tr>
<td><0.0025 & 0-1</td>
<td>27,769</td>
<td>1,234,994</td>
<td>930</td>
<td>5,890</td>
<td>0.002</td>
<td>1.91</td>
<td></td>
</tr>
<tr>
<td>0.0025-0.2</td>
<td>3,527</td>
<td>163,625</td>
<td>906</td>
<td>91</td>
<td>0.0025</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>0.2-0.5</td>
<td>3,527</td>
<td>163,625</td>
<td>906</td>
<td>91</td>
<td>0.0025</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>0.5-1</td>
<td>5,171</td>
<td>201,275</td>
<td>488</td>
<td>196</td>
<td>0.0025</td>
<td>0.0025</td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>3,455</td>
<td>131,905</td>
<td>206</td>
<td>196</td>
<td>0.0025</td>
<td>0.0025</td>
<td></td>
</tr>
<tr>
<td>2-4</td>
<td>204</td>
<td>71,711</td>
<td>105</td>
<td>71</td>
<td>0.0025</td>
<td>0.0025</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>195,635</td>
<td>7,667,752</td>
<td>17,448</td>
<td>19,696</td>
<td>0.0024</td>
<td>0.0025</td>
<td></td>
</tr>
</tbody>
</table>

Total excludes “negligible” dose group
Also depended on age at exposure
20% for 0–9 year olds
6% for 40+ year olds

Dose relationship

- 0.1–2.5 Sv: Linear
- 0.015 Gy: elevated & linear

- High doses
 - No data because no survivors
- Low doses
 - Not enough power
 - Extrapolation via cell studies: largely linear
 - Radiation hormesis
 - BEIR VII Appendix D: Body of evidence suggests no such effect
Dose relationship

- Most solid cancers are linear
- Leukemia typically fit with linear-quadratic function
- Some specific sites suggest non-linear behaviour

Age and time effects

- Risk also depends on age of exposure (younger people are more sensitive).
- Risk also depends on attained age/time since exposure (the longer you live, the more your risk increases). Relative risk becomes less elevated as time progresses after exposure, but absolute risk still elevated

Gender effects

- Females more sensitive than males...
 - Sensitive gender organs: breast
 - Higher relative risk
 - May be simply related to lower background rates and comparable sensitivity (Preston 2007)
Q1: The organs most at risk of a second cancer for a 15 year old female are

- 5% 1. Breast, muscle tissue, thyroid
- 2% 2. Heart, lung, breast
- 92% 3. Breast, lung, thyroid
- 1% 4. Breast, lens of eye, lung
- 0% 5. Lung, thyroid, colon

A1: 3. Breast, lung, thyroid
- Breast, lung, and thyroid are the most sensitive organs for female pediatric patients
- Heart and lens of eye are also sensitive to damage and late effects, but not second cancers.
- Muscle/connective tissue, etc., are not sensitive at these doses. I.e., no sarcomas.

Outline
- Radiation and cancer induction
- Medically exposed people
- Estimating risk of second cancers
- Minimizing the risk

Medical Studies
• We know radiation causes cancer, so no surprise that radiotherapy can cause second cancers.
• Radiation confers benefit, delivered for this purpose
 - Well, radiation delivered to CTV
 - Radiation to CTV-PTV only because we can’t control setup and immobilization (and range uncertainty for protons)
 - Radiation outside PTV only because we can’t control the radiation
 • Entrance and exit doses as well as out of field

Radiation sources
In field and build-up/exit regions are deposited by primary beam
Out-of-field source:
Photon therapy
10x10 field, 5 cm depth
6 MV
Kra et al, Phys Med Biol 2010

Proton therapy
250 MeV scanning beam
Fontenot et al, Phys Med Biol 2008

Q2: What is the dominant contributor to the second cancer risk from passive scatter proton therapy?

<table>
<thead>
<tr>
<th>%</th>
<th>1. Neutrons generated in the accelerator head</th>
<th>2. Neutrons generated in the patient</th>
<th>3. Photons from capture gamma events</th>
<th>4. Radiation from room activation</th>
<th>5. No risk from this modality</th>
</tr>
</thead>
<tbody>
<tr>
<td>72%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A2: Neutrons generated in the accelerator head

- Most dose equivalent will originate with neutrons generated in the accelerator.

Dosimetry

- Dosimetry is challenging for medical radiation epidemiology studies
- Thousands of patients
- In-field
 - Usually no CT. Reconstruct from charts
- Near field
 - Estimate where field borders are (and patient anatomy)
- Out of field
 - Requires special programs

More complicated when neutrons are involved
- Protons/High-energy photon therapy
- Neutrons are hard to measure
- Neutrons have high and uncertain RBE

\[H (Sv) = w_R \times D (Gy) \]

Or

\[H_{eq} = Q_a(D_a + D_w) + Q_x \cdot D_w \]

ICRP 92

\[wR \]

Spectrum
Neutron Dosimetry

• Other measurements have found RBE = 1
• Depends on cell line, endpoint, dose, dose rate…
• Large uncertainties in neutron RBE

Dicentric chromosome induction in human lymphocytes
Nolte, 2005

Mutagenesis in mouse fibroblast cell line
Hall, 1995

Q3: Which of the following statements about high-LET measures is true?

1. Q > WR
2. RBE > WR which is approximately equal to Q
3. RBE values are consistent for a given endpoint for a constant LET
4. WR is ~5 from photon beam generated neutrons
5. RBE values are the best, but are nearly impossible to find or determine

A3: RBE values are the best, but are nearly impossible to find or determine

1. WR > Q - Similar values
2. RBE ~ WR which is approximately equal to Q - RBE has many values
3. RBE values are consistent for a given endpoint for a constant LET - RBE also varies with cell type, in vivo vs in vitro, etc.
4. WR is ~5 from photon beam generated neutrons. The WR maximum aligns with the fluence maximum

Second Cancers in RT patients

- Elevated risk of second cancers for patients undergoing RT
- Second cancers are one of the most common late effects for pediatric patients (NCI bulletin, 5:6 2008)
- SEER database (200,000+ RT patients)
 - Second cancers (RT patients):
 - 9% overall
 - 4-20% by primary site

Rates for medically exposed

- Not all are from radiation
 - Confounding genetics, environment, etc.
- What is the actual risk from RT?
- SEER registry, 12 year mean follow up, 1+ yr survivors
 - Berrington et al, Lancet Oncology, 2011
- 9% of patients developed a second cancer
- 8% of all observed second cancers were attributed to radiation

- ~1% of cancer patients that survive tx (1 yr) will develop a second cancer because of the radiation

Second Cancer Rates

- Fraction of second cancers attributable to radiation varies with primary site (Maddams et al, Int J Cancer, 2008)
- Hodgkin’s disease: 17%
- Oral cavity: 18%
Interesting considerations

- Elevated risk of second cancers even for primary sites with poor prognosis (lung)
 - RR: 1.18 (Berrington 2011), 7% attributable to RT (Peplonska 2004)
- Elevated risk of second cancers even for old patients (prostate).
 - RR: 1.26 (Berrington 2011), 5% attributable to RT (Maddam 2008)
 - 1 patient in 70 (10+ yr survivors) develops RT-attributable second cancer. (Bremer et al. Cancer 2002)
- Elevated risk of sarcoma (RR:1.29)
 - 15% of second cancers were sarcoma (Diallo 2009)

Severity of second cancers

- Limited study, but no indication that second cancers offer better or worse outcomes than primary cancers (Mery et al. Cancer 2009)

Dose Response

- Much larger dose range for medically exposed
- Linear, plateau, or linear exponential?
- Most organs aren’t linear, but what?

Thyroid

Bladder

Signatures, Lancet, 2009

Nut, Radiat 2007
Location

- Where do second cancers occur?
 - 12% within geometric field
 - 66% beam-bordering region
 - 22% out-of-field (>5 cm away)

- Get most second cancers in high-intermediate dose regions

Location

- Low doses (<1 Gy; 10 cm from field edge)
 - Studies typically don’t find increased risk
 - except for sensitive organs: lung after prostate (Brenner 2000)
 - Most likely too few patients
 - Low absolute risk

- Higher doses (in and near treatment field)
 - Most organs show elevated risk
 - Sarcomas inside the treatment field

Q4: Which is unique about medically induced second cancers to A-bomb induced cancers

- 2% 1. Over-expression of colon cancers
- 7% 2. Longer latency period
- 14% 3. Heightened sensitivity/risk
- 75% 4. Heightened incidence of sarcomas
- 2% 5. More aggressive tumors
A4: 4. Incidence of sarcomas

- Virtually no excess risk of sarcomas observed in A-bomb survivors; it is overwhelmingly associated with high doses.
- There is no evidence for any of the other differences.

Outline

- Radiation and cancer induction
- Medically exposed people
- Estimating risk of second cancers
- Minimizing the risk

Epidemiology studies

- Clearly the gold standard, but....
- Need follow up
 - Decades later, treatment modality obsolete
 - No IMRT epidemiology studies
 - No proton therapy studies
- Need lots of patients
 - Hard to coordinate
 - Expensive
Alternative

- Calculate estimate of risk
- Use risk models
- Small number of patients
- Use CT data and detailed dose calculations for the subset evaluated
- Can look at modern or theoretical treatments
- Results can depend on model assumptions and uncertainty

Estimating 2nd cancers

- Low doses: 5%/Sv (from A-bomb)
 - This value also includes dose rates effects to move from acute exposures to protracted exposure.
- More refined - look at age, gender, and organ specific risk coefficients
- Can also incorporate age at exposure and years of survival

What about at higher doses?

- Model dose response
- Available models derived from
 - Epidemiology data (Schneider et al. Int J Radiat Oncol Biol Phys 2005)
- Often reasonable, best available, but don’t always match epidemiologic data.
Q5: Which of the following is not accounted for when estimating risk for medically exposed vs. A-bomb

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>35%</td>
<td>5. Duration of exposure</td>
</tr>
<tr>
<td>32%</td>
<td>2. Environmental factors</td>
</tr>
<tr>
<td>21%</td>
<td>3. Dose distributions</td>
</tr>
<tr>
<td>7%</td>
<td>4. LET of the radiation</td>
</tr>
<tr>
<td>5%</td>
<td>1. Age of the population</td>
</tr>
</tbody>
</table>

A5: 2. Environmental factors

- A-bomb survivors lived during war times and often in industrial areas. These effects are not well accounted for.
- Most risk estimates for cancer patients/general population include:
 - Age, dose, LET, prolonged exposure vs. acute

Outline

- Radiation and cancer induction
- Medically exposed people
- Estimating risk of second cancers
- Minimizing the risk
Reducing the risk

• Methods and thoughts on reducing the risk of second cancers

Reducing treatment volume

• Reducing CTV. Usually hard.
 - Testicular - volume treated with RT has been reduced
 - Hodgkin Lymphoma: involved fields rather than entire chest
 - TBI can be replaced by targeted bone marrow irradiation (Aydogan et al. Drr J Radiat Oncol Biol Phys. 2010)
• Reducing PTV
 - Better setup
 - Better motion management

Modality: scanning protons

• Much interest in scanning beams
• No external neutrons
• Still internal neutrons, gammas
 - Up to half of dose equivalent to near organs
 - Negligible dose to distant organs
• Scanning beam is an improvement, but is not free from out-of-field dose
Modality: Scatter Protons vs. Photons

- Reduce exit dose can substantially reduce treated volume for some cases (CSI)
- Near to field, dose equivalent much lower with protons
 - Less lateral scatter
 - Less exit dose
- Less total out of field dose
- Effect more pronounced at lower p+ energy

[Graph showing dose distribution for protons vs. photons]

Modality: photon IMRT

- High energy therapy (vs. low energy)
- Produces neutrons
- Requires fewer MU
- High energy photons scatter less
- No significant difference between 6 MV and 18 MV (Kry et al, Radioth Oncol 91:132;2009)
- 10 MV may be optimal energy for deep tumors
 (Kry 2005, Int J Radiat Oncol Biol Phys)

IMRT vs. conformal

- Overall: generally higher doses with IMRT

Risk:
- Depends on how much irradiated volume is reduced (reduced risk)
- Depends on how much modulation is employed (increased risk)

[Graph showing dose distribution for IMRT vs. conformal]

Beam modifiers

- **Wedges**
 - Physical wedges \(\Rightarrow \) increase out of field dose by 2-4 times (Sherazi et al, 1985, Int J Radiat Oncol Biol Phys)
 - Dynamic or universal wedges \(\Rightarrow \) no increase (Li et al, 1997, Int J Radiat Oncol Biol Phys)

- **MLC orientation**
 - Tertiary MLC reduces dose (extra shielding)
 - Align MLC along patient body reduces dose much more than across the patient (Mutic, Med Phys, 1999)

Flattening filter free

- Out of field dose usually (but not always) reduced for FFF
- Most reduced when head leakage is most important (i.e., FFF is best when):
 - Large distances from the treatment field
 - Small targets
 - High modulation

Other approaches

- **Add head shielding**
 - Pb for photons
 - Heavy -> manufacturing challenges
 - Steel and PMMA for protons (Taddei et al. Phys Med Biol 2008)
 - Could reduce external dose substantially (approach scanning beam doses)

- **MLC jaw tracking**
 - Small reduction in integral dose
Q6: Which of the following is likely to reduce the risk of second cancers

1. Orient the MLC leaves perpendicular to the patient axis instead of along the patient axis
2. Use physical wedges rather than dynamic wedges
3. Reduce the treated volume
4. Treat with a photon beam instead of protons
5. Treat patients with high energy photon IMRT

A6: 3. Reduce the treated volume

- Alignment of the MLC along the patient axis reduces dose to the patient (Mount S and Klein E, Int J Radiat Oncol Biol Phys 44:947;1999)
- Physical wedges have 2-3 times the dose outside the field (Sherazi et al, 1985, Int J Radiat Oncol Biol Phys vs Li et al, 1997, Int J Radiat Oncol Biol Phys)
- Reducing the treatment volume will reduce the high and intermediate dose volumes, where second tumors most often occur (Diallo I et al. Int J Radiat Oncol Biol Phys 74:876;2009)
- Proton therapy is associated with a lower risk (Fontenot J et al, Int J Radiat Oncol Biol Phys 74:616;2009)
- High energy IMRT has slight but not significantly elevated risk (Kry et al, Radiat Oncol 9:132;2009)

Thank you!
RBE uncertainty

- Often assume wR values or Q values

Dose response uncertainty

- Fontenot

A-bomb Dosimetry

- Each individual was ascribed a dose
 - Depended on location, shielding, etc. (tricky)
 - Colon dose
- Atomic bomb included both photons and neutrons (small contribution: 10%).
 - Neutron dose weighted by 10 to account for RBE
- RBE and neutron dosimetry remain sources of uncertainty
- Exclude patients who died or developed cancer before latency period
 - Min 2 years leukemia, 5 years solid cancer
 - E.g., begin analysis in 1950 (Preston 2003)
What are the RT doses?

20 cm from the field edge

- 20-60 mSv, scanned proton beam
- 40-400 mSv, passive scatter protons
- 250 mSv, Conventional photons
- 300-450 mSv, IMRT

5-100 mSv

Courtesy of David Brenner

RT second cancers

• What is different about radiotherapy patients as compared to A-bomb survivors?
 - Not a healthy population (risk attributable to radiation?)
 - Different environment, different diet -> different background rates
 - Different ages
 - Fractionated exposure not acute
 - Higher doses (not capped at 4 Gy)
• How do these differences affect

Protons vs. Photons

Conventional photon therapy

• Photons:
 - More dose near treatment field
 - Comparable dose beyond 10-20 cm from field edge

Stovall, 1995, Med Phys
Xu, 2008, Phys Med Biol