AAPM-SAM-2012-Das (1)

Beam Data Collection and Commissioning for Linear Accelerators: Technical Considerations and Recommendations

> Indra J. Das, PhD, FAAPM, FACR, FASTRO Department of Radiation Oncology Indiana University of School of Medicine & Indiana University Health Proton Center Indiana

Preface

Accelerator beam data commissioning equipment and procedures: Report of the TG-106 of the Therapy Physics Committee of the AAPM Indra J. Das²⁰ Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 Chee-Veli Cheng Department of Radiation Oncology, Morristown Memorial Haspital, Morristown, New Jersey 07962 Ronald J. Watts International Michael Physics Servicer, San Antonio, Teau 78212 Andres Annesija Uppelal University and Nucletom Scandinavia AR. 751 47 Uppelala, Sweden John Gibbons Department of Radiation Oncology, Mary, Bird Perkins Cancer Center, Baton Ronge, Lusiaiana 70809 X. Allen Li Department of Radiation Oncology, Medical College of Wisconsin, Milwauker, Wisconsin 53226 Joseica Convenselian Radiological Physics Center, MD Anderson Cancer Center, Houston, Teau 77030 Raj. Meta Department of Radiation Oncology, Ochmer Clinic, New Orleans, Lusiaiana 70121 William E. Simon San Nuclear Corporation, Melbourne, Florida 3240 Tingu

Med. Phys. 35(9), 4186-4214, 2008

<text><text><text><text><text><text><text>

AAPM-SAM-2012-Das (2)

Planning for Commissioning Data

	Square field size (cm)																	
(a)	De	escription	1	2	3	4	5	6	8	10	12	14	16	20	25	30	40	>40
		Application	В	MRT di	ata				Tradit	ional ra	distion	oncole	gy field	ls			Magna field	
	Scan	PDD/TMR	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
		Profiles @ 5–7 depths Diagonal or star profiles	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	Nonscan	S _c	×	×	×	×	х	×	×	×	×	×	×	×	×	×	×	×
	data	S _{op} WF/TF	×	×	×	× ×	××	××	××	× ×	××	××	××	××	××	× ×	×	×
		Surface dose	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	D	scription								Cone s	ize (cm	n×cm)						
			_		5×5			10×1	0		15×15			20×20			25×2	5
	Scan data	PDD			×			×			×			×			×	
		Profiles @ 5-7 depths			×			×			×			×			×	
	Nonscan data	Cone factor			×			×			×			×			×	
		Cutout factor			×			×			×			×			×	

AAPM-SAM-2012-Das (3)

Planning for Commissioning Time

Time= [(PDD + 5 profiles)/beam energy] x (open + 4 wedges) x 60 points/scan x [(1 s/pts + (1s/movement and delay)] x (15 fields x 2 energies)

> $\sim 10^5 \text{ s}$ ~ 30 h

Rational For Commissioning Beam Data

AAPM-SAM-2012-Das (4)

Rational For Not Using Golden Data

$$|x_i - x^-| < \Delta, \forall x$$

$\Delta = ? (0.5, 1.0 \text{ or } 2\%)$

For all practical purposes, based on the presented results, we suggest 2 mm DTA and 2% DD as a convenient criteria for $\boldsymbol{\gamma}$ analysis to be met when evaluating the agreement of profiles scanned in common dosimetrical conditions. Better results are attainable by employing different strategies coping with the imperfections of measurements.

It is our opinion that matched beams which do not meet the earlier suggested criteria should not be treated as clinically interchangeable.

Hrbacek, et al "Quantitative evaluation of a beam-matching procedure using one dimensional gamma analysis," Med. Phys. 34, 2917–2927, 2007.

Medical Physics, 39(2), 569-572, 2012

nh.

POINT/COUNTERPOINT

for topics suitable for these Point/Counterpoint debates should be addressed to Colin G. Orton, Professor spre State University, Detroit: ortone@comeastnet.Persons participating in Point/Counterpoint discussions are their knowledge and communicative skill. Their positions for or against a proposition may or may not reflect their misms or the positions of their employers.

Vendor provided machine data should never be used as a substitute for fully commissioning a linear accelerator

Indra J. Das, Ph.D. Radiation Oncology Department, Indiana Uni Tel: 317-944-1303; E-mail:Idas@iupui.edu) -School of Medicine, India

Christopher F. Njeh, Ph.D. Texas Oncology Tyler, Radiation Oncology Department, Tyler, Texas 75702 (Tel: 903-579-9896; E-mail: Christopher/Njeh@USONCOLOGY.COM)

Colin G. Orton, Ph.D., Moderator

(Received 22 September 2011; accepted for publication 25 September 2011; published 11 January 2012)

[DOI: 10.1118/1.3658740]

AAPM-SAM-2012-Das (5)

Question

Time required for commissioning a dual energy linear accelerator with photon and electron beam is

0%	A.	1 day
5%	В.	3 days
42%	C.	1 week
44%	D.	4-6 weeks
9%	E.	2 months

Question

Time required for commissioning a dual energy linear accelerator with photon and electron beam is

- A. 1 day
- B. 3 days
- C. 1 week
- D. 4-6 weeks
- E. 2 months

Answer: D

Reference: Das et al, TG-106, Med. Phys. 35(9), 4186-4214, 2008

AAPM-SAM-2012-Das (6)

Definition of Detectors

- Standard chamber 10⁻¹ cm³—The active volume for a standard Farmer-type ionization chamber is on average 0.6 cm³.
- Minichamber 10⁻² cm³—The active volume for a mini-ionization chamber is on average 0.05 cm³.
- Microchamber 10⁻³ cm³—The active volume for a microionization chamber is on average 0.007 cm³ and ideally suited for small field dosimetry such as radiosurgery,gamma knife, CyberKnife, and IMRT

AAPM-SAM-2012-Das (7)

AAPM-SAM-2012-Das (8)

Electrometer

- ✤ Null Setting
- ✤ Cable subtraction
- Proper bias
 - $\exists >300 \text{ V}$ for ion chamber
 - ⊐ 100 V for diamond
- Proper gain
- Proper mode

Question

High voltage is applied to ion chamber for?

(1) To reduce ion recombination; (2) To reduce polarity effect; (3) 100 volts;(4) 300-400 volts

15%	А.	1 only
15%	В.	1 and 2 only
0%	C.	1, 2 and 3 only
11%	D.	2 and 3 only
59%	E	1 and 4 only

Question

High voltage is applied to ion chamber for?

(1) To reduce ion recombination; (2) To reduce polarity effect; (3) 100 volts; (4) 300-400 volts

- A. 1 only
- B. 1 and 2 only
- C. 1, 2 and 3 only
- D. 2 and 3 only
- E. 1 and 4 only

Answer: E

Reference: Das et al, TG-106, Med. Phys. 35(9), 4186-4214, 2008

AAPM-SAM-2012-Das (9)

Question When setting ion chamber in water tank, the correct position of the chamber as viewed in water tank (as seen in figure) is:

Question

When setting ion chamber in water tank, the correct position of the chamber as viewed in water tank (as seen in figure) is:

ce: Das et al, TG-106, Med. Phys. 35(9), 4186-4214, 20

AAPM-SAM-2012-Das (10)

AAPM-SAM-2012-Das (12)

AAPM-SAM-2012-Das (13)

AAPM-SAM-2012-Das (14)

Future of Beam Data Commissioning

- Standardization of linear accelerators
- Monte Carlo based commissioning
- Newer Radiation Detectors & Cables
- Newer Scanning Systems
- Smart algorithms

AAPM-SAM-2012-Das (15)

AAPM-SAM-2012-Das (16)

Question Photon beam dose profiles taken with various detectors as shown in figure is possibly due to:

AAPM-SAM-2012-Das (17)

What is a Small Field?

- ✤ Lack of charged particle
 - Image: Dependent on the range of secondary
electrons
- Collimator setting that obstructs the source size
- Detector is comparable to the field size

AAPM-SAM-2012-Das (19)

*	Absolute
	¤ Dose
*	Relative
	⊭ TMR
	⊭ Profiles
	<pre> Dutput, S_{cp} (total scatter factor), [D(r)/ D(ref)] </pre>

Relative Dosimetry $D_{w,Q_{msr}}^{f_{msr}} = M_{Q_{msr}}^{f_{msr}} N_{DW,Qo} k_{Q,Qo} k_{Q_{msr},Q}^{f_{msr},f_{ref}}$

$$\Omega_{\substack{f \text{clin} f \text{mir}}}^{f \text{clin} f \text{mir}} = \frac{M_{\substack{Q \text{clin}}}^{f \text{clin}}}{M_{\substack{D \text{mir}}}^{f \text{clin}}} \left[\frac{\left(D_{w, Q_{\text{clin}}}^{f \text{clin}} \right) \left(M_{\substack{Q \text{clin}}}^{f \text{clin}} \right) \left(M_{\substack{Q \text{clin}}}^{f \text{clin}} \right) \right]}{M_{\substack{D \text{mir}}}^{f \text{mir}}} \left[\frac{D_{\substack{M \text{clin}}}^{f \text{clin}}}{W_{w, Q \text{mir}}} \right] = \frac{M_{\substack{Q \text{clin}}}^{f \text{clin}}}{M_{\substack{Q \text{mir}}}^{f \text{mir}}} k_{\substack{Q \text{clin}, Q \text{mir}}}^{f \text{mir}} k_{\substack{Q \text{mir}}}^{f \text{mir}} k_{\substack{Q \text{clin}, Q \text{mir}}}^{f \text{mir}} k_{\substack{Q \text{cli$$

AAPM-SAM-2012-Das (20)

New Data on Correction Factor

	5 m	m	7.5 n	nm	10 n	m	100
Detector	$M_{Q_{\rm clin}}^{f_{\rm clin}}/M_{Q_{\rm me}}^{f_{\rm mw}}$	$k_{Q_{\rm chs}}^{\ell_{\rm chs},\ell_{\rm max}}$	$M_{Q_{\rm clin}}^{f_{\rm clin}}/M_{Q_{\rm me}}^{f_{\rm max}}$	$k_{Q_{\rm cla},Q_{\rm mar}}^{\ell_{\rm cla},\ell_{\rm mar}}$	$M_{Q_{\rm clin}}^{f_{\rm clin}}/M_{Q_{\rm max}}^{f_{\rm max}}$	$k_{Q_{\rm clic}/Q_{\rm max}}^{\ell_{\rm clic}/I_{\rm max}}$	1
A16	0.626 (15)	1.089 (3)	0.811 (10)	1.018 (3)	0.866 (6)	1.010 (3)	-
PinPoint	0.620 (17)	1.101 (3)	0.801 (7)	1.024 (3)	0.862 (5)	1.015 (3)	Fig. 5, 9
Diode 60008	0.726 (1)	0.943 (3)	0.873 (1)	0.949 (3)	0.912 (1)	0.964 (3)	grl dosim bright an
Diode 60012	0.705 (1)	0.956 (3)	0.847 (2)	0.966 (3)	0.891 (1)	0.978 (3)	tor bears
EDGE	0.726 (1)	0.948 (3)	0.864 (1)	0.955 (3)	0.906 (1)	0.966 (3)	sion fit re
Alanine	0.544 (8)	1.249 (8)	0.785 (12)	1.059 (4)	0.855 (13)	1.019 (3)	data corre
TLD	0.668 (4)		0.809 (6)		0.880 (8)		Tons IV.
EBT films	0.659 (17)		0.811 (16)		0.853 (18)		after corre
Polymer gels"	0.702 (21)		0.872 (27)		0.929 (29)		theses ind
							Detector
							A16 PraPrint
							Diode 600
							Diode 600
							EDGE
	untalis at al	Mod Phys		0-2378 2			TLD

* 5 500 * 5 10 mm * 10 mm * 10 mm * 10 mm * 10 mm			/				
·*							
Fig. 5. Volume arranging correction factors, calculated using 3D polymer gal abstance results (Ref. 6) and assuming cylindrical datecesss of 2.3 mm height and varging cavity daterest for the 5.75, and 10 mm field collima- tor barran at 000 mm SBD. The incentianty of the presented results is of the order of 4% and the solid lines correspond to sequent language regre- sive fit results. In the datecest of all other measurement perturbations, these data correspond to $V_{\rm blackers}^{\rm data}$ and							
TARLE IV. Output factors $\Omega_{1000}^{(m-1)}$ for the 5, 7.5, 10, and 15 mm fields, after correction factors are applied at all field sizes except 15 mm, as shown in Table III. Corresponding uncertainties at 68% level are shown in paren- theses indicating the uncertainty in the final one or two digits.							
Detector	5 mm	7.5 mm	10 mm	15 mm			
A16 FinPoint Diode 60008 Diode 60012 EDGE Alanine TLD	0.682 (17) 0.683 (18) 0.684 (2) 0.674 (2) 0.679 (2) 0.679 (11) 0.668 (4)	0.825 (10) 0.820 (8) 0.829 (3) 0.818 (3) 0.825 (3) 0.831 (13) 0.809 (6)	0.874 (7) 0.875 (5) 0.879 (3) 0.872 (3) 0.872 (13) 0.872 (13) 0.880 (8)	0.939 (3) 0.939 (2) 0.940 (1) 0.949 (1) 0.956 (1) 0.945 (14) 0.941 (7)			
Polymer gels ² Weighted mean	0.702 (21) 0.681 (1)	0.872 (23) 0.824 (1)	0.929 (29) 0.875 (1)	0.954 (1)			

AAPM-SAM-2012-Das (21)

AAPM-SAM-2012-Das (22)

3D Scanner (Sun Nuclear)

Setup Subjectivity

- Automatic leveling, water surface detection and beam center detection
- ⊐ No tank shifts
- Detector orientation/resolution
 - ⊐ 3D Scanner design always using the short dimension of chamber to scan
- ✤ Time

 - × Smaller tank fills and drains faster

Ψ

AAPM-SAM-2012-Das (23)

Question

What is a Small Field?

(1) Lack of charged particle equilibrium; (2)Collimator setting that obstructs the source size; (3) Fields <3x3 cm² and independent of beam energy; (4) Leakage is comparable to signal

- A. 1 only
- B. 1 and 2 only
- C. 1, 2 and 3 only
- D. 1, 2 and 4 only
- E. 1-4 (all)

Question

What is a Small Field?

(1) Lack of charged particle equilibrium; (2)Collimator setting that obstructs the source size; (3) Fields <3x3 cm² and independent of beam energy; (4) Leakage is comparable to signal

- A. 1 only
- B. 1 and 2 only
- C. 1, 2 and 3 only
- D. 1, 2 and 4 only
- E. 1-4 (all)
- Answer: B

Reference: Das et al, Med. Phys. 35, 206-215, 2006

AAPM-SAM-2012-Das (24)

		Question	
	Wł	hat is $k_{Q_{clin},Q_{msr}}^{f_{clin},f_{msr}}$?	
17%	А.	Defined in TG-51 for chamber correction factor	
46%	В.	Defined in noncompliant TG-51 dosimetry for correcting reading to actual dose	
33%	C.	Conversion factor from K _Q to Dose	
0%	D.	Used in dynamic and Arc therapy dose calculation	
4%	E.	Used primarily in Tomotherapy dosimetry	

Question

What is $k_{Q_{clin},Q_{msr}}^{f_{clin},f_{msr}}$?

- A. Defined in TG-51 for chamber correction factor
- B. Defined in noncompliant TG-51 dosimetry for correcting reading to actual dose
- C. Conversion factor from K_Q to Dose
- D. Used in dynamic and Arc therapy dose calculation
- E. Used primarily in Tomotherapy dosimetry

Answer: B

Reference: Alfonso, et al. Med Phys 35, 5179-5186 (2008)

Conclusions

- Golden Data should be taken as a reference only
- Understand time and amount of data to be taken
- View each parameters properly, double check by another individual
- Use proper detector for each type of data collection
- Set optimum speed for scanning, do not rush

AAPM-SAM-2012-Das (25)

-Conclusions

- Understand the limits and measuring condition
- ✤ Question every unusual data set
- Do not smooth data too much
- ✤ Write report for future reference
- Future technology & resources could help commissioning simpler

