Acceptance Testing of a Digital Breast Tomosynthesis Unit

2012 AAPM Spring Clinical Meeting
Jessica Clements, M.S., DABR

Objectives
• Review of technology and clinical advantages
• Acceptance Testing Procedures
• QC Testing Procedures
• Accreditation Process

Selenia Dimensions
• 2D Digital Mammography System
• 3D Digital Breast Tomosynthesis
 – Received FDA Approval in February of 2011
 – For existing 2D system, a software upgrade is required to activate DBT
 – DBT is considered a new mammographic modality separate from Full Field Digital Mammography

Unit design
• Allows both 3D and 2D images to be acquired under the same breast compression
• Improved selenium detector, 70 µm pixel size
• High Transmission Cellular (HTC) anti-scatter grid in 2D
• Tungsten target x-ray tube
• Filter options
 – 50 µm Rh and Ag (2D)
 – 0.7 mm Al (3D)
2D Breast Imaging

- Single projection results in tissue superimposition that is created by the overlap of normal breast structures

3D Principle of Operation

- X-ray tube moves in an arc across the breast
- A series of low dose images are acquired from different angles
- Total dose approximately the same as one 2D mammogram
- Projection images are reconstructed into 1 mm slices

*video of combo exam of ACR Phantom

Images courtesy of Hologic
Advantages

- Imaging dense breast tissue
- May decrease recall rate
- Addresses issue of tissue overlap
- Dose within existing limits for 2D mammography

Personnel Requirements

- Required Training for a medical physicist:
 - Digital Mammography: MQSA Personnel requirements including 8 hours of training in surveying units of digital mammography
 - Digital Breast Tomosynthesis: Must receive at least 8 hours of training in digital breast tomosynthesis modality
Responsibilities

- Unit must be evaluated by a medical physicist before clinical use commences after the equipment is first installed, moved, or significantly modified.
- The medical physicist must review the results of the technologist’s QC tests at least annually.
- The results of the overall Quality Assurance and Quality Control program must be reviewed by the medical physicist with the responsible interpreting physician at least annually.

Quality Control Tests to be Performed by the Medical Physicist Upon Installation

- Mammographic Unit Assembly Evaluation
- Artifact Evaluation
- Beam Quality Assessment – HVL Evaluation of System Resolution
- AEC Function Performance Breast Entrance Exposure, AEC Reproducibility and AGD
- Radiation Output Rate Phantom Image Quality Evaluation
- Signal to Noise and Contrast to Noise Diagnostic Review Workstation Quality Control
- DICOM Printer Quality Control
- Geometry Calibration for Tomosynthesis Option Compression Thickness Indicator
- Compression

*Described in the 1999 ACR Mammography QC Manual

Action Categories

Category A: If any of the following quality control tests evaluate the performance of the image acquisition components of the Seniata Dimensions system produces results that fall outside the action limits as specified by the manufacturer, the source of the problem must be identified and corrective action must be taken before any further examinations are performed.

Category B: If any of the following quality control tests evaluate the performance of a diagnostic device used for mammographic image interpretation (i.e. DICO prints, physician’s review station) produces results that fall outside the action limits as specified by the manufacturer, the source of the problem must be identified and corrective action must be taken before that device can be used for mammographic image interpretation. Clinical imaging can be continued and alternative approved diagnostic devices must be used for mammographic image interpretation.

Category C: If any of the following quality control tests evaluate the performance of components other than the digital image receptor or the diagnostic devices used for mammographic image interpretation produces results that fall outside the action limits as specified by the manufacturer, the source of the problem must be identified and corrective action must be taken within thirty days of the test date. Clinical imaging and mammographic image interpretation can be continued during this period.
Technologist QC to be performed by the medical physicist at acceptance

Detector Flat Field Calibration
- Pre-programmed set of exposures of the flat-field acrylic phantom without a compression paddle
- Review preview images for foreign objects, gross artifacts, or other non-uniformities or collimation interference
- Performed weekly by technologist
- Category A

Geometry Calibration for Tomosynthesis
- Image the provided geometry phantom as specified
- Evaluated automatically by software in the system
- Performed by technologist semi-annually
- Category A
Compression Thickness Indicator

- Compress the 7.5 cm spot contact compression paddle onto the ACR phantom using full automatic compression of approximately 30 pounds
- Record the thickness indicated
- Performed by the technologist bi-weekly
- Category C

DICOM Printer QC

- A SMPTE pattern is printed from the imaging system and optical densities are measured.
- Mid density (40%), lower density (90%), and density difference (10%-40%)
- Limit: +/-0.15
- Performed by the technologist weekly
- Category B

Medical Physicist QC Tests

Collimation

- Measure the deviation between x-ray field and edges of the image receptor: 24x29, 18x24 (L), 18x24 (C), 18x24 (R), and 18x29 cm tomo
- Measure distance with digital ruler
- X-ray field must not extend by more than 2% SID on any side of the detector
- Category C
Collimation

- Measure the deviation between x-ray field and light field: 24x29 cm paddle
- Use ready pack, GafChromic film, or other test tool to visualize x-ray field
- The total misalignment of the edges of the light field and the x-ray field along either the length or the width of the visually defined field at the plane of the breast support surface must not exceed 2% of the SID
- Category C

Collimation

- Measure the deviation between compression paddle and edges of the image receptor: 24x29, 18x24 cm, and small breast (if available)
- The anterior edge of the compression paddle must be aligned just beyond the chest wall edge of the image receptor so that it does not appear in the mammogram. The anterior edge must not extend beyond the chest wall edge of the image receptor by more than 1% of the SID.
- Category C

Artifact Evaluation

- Image the flat field phantom (4 cm thick acrylic block – manufacturer provided)
 - No compression paddle
 - All filters in each imaging mode (conventional, tomo, magnification)
 - Rotate phantom 180° between exposures
 - View full resolution images for artifacts
- Print flat field pattern as 2560x3328 for 8x10” film and 3328x4096 for 24x30 cm film, both as True Size Printing
- Category C

Artifact Examples

- Dead pixels
 - cluster of 16 or more
 - complete or partial row or column
System Resolution

- Uses system limiting spatial resolution as performance indicator
- 18x24 cm compression paddle
- High contrast resolution pattern that can test up to 15 lp/mm with 1 lp/mm steps from 3-15 lp/mm
- Pattern is placed on flat field phantom approximately 1 cm from chest wall edge, with pattern angled 45° to the anode-cathode axis

AEC Function Performance

- In 2D, limiting resolution must be greater than 7 lp/mm
- In 3D, must be greater than 3 lp/mm
- Category A
- Record exposure index (and exposure parameters) for phantom thicknesses (BR-12 or acrylic) in various AEC modes used clinically in conventional, tomo, and magnification modes.
- Apply CNR correction factor to convert to corrected pixel value
AEC Function Performance

- The system is trying to maintain a constant pixel value independent of AEC mode, operating mode, breast thickness, or technique
- The pixel value of each image at any operating mode must not vary by more than 10% of the mean pixel value.
- Category C

AEC Performance at different compensation steps

- Image 4 cm of phantom at the range of compensation steps. Each step is designed to result in an additional 15% change in dose to the ACR phantom.
- Calculate ratios by dividing pixel value at a given step by the mean pixel value at step zero. Allowed ratio at each step.
- Category C

Breast Entrance Exposure, AEC Reproducibility and AGD

- Record exposure and mAs for four exposures in conventional and tomo. If COV of either exceeds 0.05, seek service.
- Category C

Breast Entrance Exposure, AEC Reproducibility and AGD

- Combine AGD for both conventional and tomosynthesis exposures for a total average glandular dose.
- If AGD exceeds 300 mrad for 4.2 cm effective breast thickness, seek service or technique adjustment.
- Category A
Radiation Output Rate

- Exposure at maximum mAs setting and 28 kVp (W/Rh)
- Dose Rate (mGy/sec) = Exposure Rate (mR/s) x 0.00873 mGy/mR
- Seek service if output rate is less than 2 mGy/s (230 mR/sec)
- Category C

Signal-To-Noise and Contrast-To-Noise Measurements

- Conventional phantom image
- Automatic ROI creation available

\[
\text{SNR} = \frac{\text{ROI mean} - \text{ROI std dev}}{\text{background std dev}}
\]

\[
\text{CNR} = \frac{\text{ROI mean} - \text{Background mean}}{\text{Background std dev}}
\]

\[
\text{Diff} = \frac{\text{CNR}_{\text{Baseline}} - \text{CNR}_{\text{Result}}}{\text{CNR}_{\text{Baseline}}} \times 100
\]

Phantom Image Quality Evaluation

- Image the ACR phantom in both conventional and tomo mode
- The largest 5 fibers, 4 spec groups and 4 masses must be visible or 4.5/4/3.5 is acceptable if SNR and high contrast resolution of the system are passing
- Performed by the technologist weekly
- Category A

Signal-To-Noise and Contrast-To-Noise Measurements

- SNR should be equal to at least 40 and the CNR should not change by more than +/- 15% of the baseline value
- Category A
Diagnostic Review Workstation
Quality Control
• Suggested equipment – photometer supplied by the manufacturer with each diagnostic review workstation
• Measure the white level and the DICOM GSDF compliance for LCD monitors; also display black level and white level uniformity performance for each CRT display
• Pass/fail criteria varies by monitor type and model
• Category B

Accreditation
• The 2D portion of the unit is accredited using standard FFDM procedures – ACR, SAR, SIA, and STX
• The DBT portion of the unit must apply to and be approved by the FDA for extension of their certificates to include the use of a DBT unit
 – MQSA Facility Certification Extension Requirements for Hologic Digital Breast Tomosynthesis

1. The x-ray tube contains a tungsten target and the following material is the filter used in 3D imaging:
 - 1. tungsten
 - 2. silver
 - 3. aluminum
 - 4. rhodium
 - 5. molybdenum
Correct Answer

1. tungsten – not in unit
2. silver – 2D only
3. aluminum
4. rhodium – 2D only
5. Molybdenum – not in unit

2. The total mean glandular dose to the ACR Mammographic Accreditation phantom must not exceed ___ mGy per view when combining the conventional and the tomosynthesis exposures at the recommended techniques for imaging an average breast:

 1. 2 mGy
 2. 3 mGy
 3. 4 mGy
 4. 5 mGy
 5. 6 mGy

Reference: Hologic: Quality Control Manual Selenia Dimensions 2D FFDM Selenia Dimensions DBT, 2011 (Part Number MAN-01965 Revision 002) p. 35

3. When the test pattern is approximately 45º to the anode-cathode axis and when imaging in tomosynthesis mode, the system limiting spatial resolution must be greater than:

 1. 3 lp/mm
 2. 5 lp/mm
 3. 7 lp/mm
 4. 9 lp/mm
 5. 11 lp/mm
Correct Answer

1. 3 lp/mm
2. 5 lp/mm
3. 7 lp/mm – minimum in 2D mode
4. 9 lp/mm
5. 11 lp/mm

Reference: Hologic: Quality Control
Manual Selenia Dimensions 2D FFDM
Selenia Dimensions DBT, 2011 (Part Number MAN-01965 Revision 002) p. 35

Correct Answer

4. Phantom image quality evaluation should be performed with the tomosynthesis acquisition by a technologist at least:

1. yearly
2. semi-annually
3. monthly
4. weekly
5. daily

Correct Answer

5. The only approved accreditation body for the digital breast tomosynthesis portion of the Hologic Dimensions unit at this time is:

1. The American College of Radiology
2. The State of Texas
3. The State of Iowa
4. The State of Arkansas
5. The US Food and Drug Administration

Reference: Hologic: Quality Control
Manual Selenia Dimensions 2D FFDM
Selenia Dimensions DBT, 2011 (Part Number MAN-01965 Revision 002) p. 35
Correct Answer

1. The American College of Radiology
2. The State of Texas
3. The State of Iowa
4. The State of Arkansas
5. The US Food and Drug Administration

6. Failure of the phantom image quality evaluation is considered an action category

Correct Answer

1. A
2. B
3. C
4. D
5. E

Reference: Hologic: Quality Control Manual Selenia Dimensions 2D FFDM Selenia Dimensions DBT, 2011 (Part Number MAN-01965 Revision 002) p. 35