Non-reference condition correction factor k_{NR} of typical radiation detectors for the dosimetry of high-energy photons

N. Chofor, D. Harder, B. Poppe

The non-reference correction factor k_{NR} is computed using the quotient of the detector sensitivity under reference conditions x_{ref} against that under general conditions x:

$$k_{NR} = \frac{Y_t(x_{ref})}{Y_t(x)} \quad (1)$$

The weighted sensitivity of detector type t at point x, $Y_t(x)$, is obtainable by summing over all spectral components and taking the quotient of the spectral dependent response against the dose to water (kerma approximation):

$$Y_t(x) = \sum_{i=1}^{n} r_t(E_i) \left(\frac{\mu_{en}(E_i)}{\rho} \right)_w \phi_E(E_i) E_i \quad (2)$$

Factor $\mu_{en}(E)/\rho$ is the mass energy absorption coefficient of water and $\phi_E(E)$ the spectral photon fluence at energy E. Values of the energy-dependent detector responses $r_t(E)$, normalized to unity at 1.25 MeV, are shown in Fig. 1a for the Farmer chamber1, TLDs LiF:Mg,Ti2 and LiF:Mg,Cu,P3, diodes EDP-10 (shielded) and EDD-5 (unshielded)3. Fig. 1b shows typical dependence of k_{NR} on the photon mean energy for LiF:Mg,Ti chips, determined from Monte Carlo computed spectra in a large water phantom under 6 MV and 15 MV photon beams at a Siemens Primus linac. The user can then simply infer k_{NR} if the beam quality at the point of interest is known. Similar relations have been obtained for the other radiation detectors investigated.

Fig 1 (a) Energy dependent responses $r_t(E)$ to monoenergetic photons for various radiation detectors. (b) Variation of k_{NR} for LiF:Mg,Ti chips with mean photon energy E_m. Symbols with field sizes: Calculated k_{NR} values, based on experimental response values for quasi-monoenergetic photons2 and on Monte-Carlo calculated photon spectra of 6 and 15 MV photon beams4. Symbols with error bars: Measured k_{NR} values5 in 6 MV photon beams at various field sizes, depths and off-axis distances.

References: