Modeling a MLC Scatter Source for In-air Output Factors

Scattered radiation from multi-leaf collimators (MLCs) is no longer negligible for calculating in-air output ratio, S_c for small and irregular fields often used in intensity-modulated radiation therapy (IMRT). An extra-focal source model for scattered radiation from MLCs, namely MLC scatter source, has been developed to improve the accuracy of the S_c calculation.

In this study, characteristics of the MLC scatter source are divided into three cases: (1) MLCs are in retracted position out of beam’s eye view (BEV) defined by collimators; (2) MLC position is located within collimator-defined BEV but does not act on the change of detector’s eye view (DEV); and (3) MLC position is located within collimator-defined BEV and acts on the change of the DEV simultaneously, as illustrated in Figure 1. In case 1, the effect of scattered radiation from MLCs on the in-air output factor was negligible or non-existent. The MLC scatter source model consisted of two Gaussian functions for case 2 and case 3. The two Gaussian functions for each case have combination of edge Gaussian function, EG and area Gaussian function, AG. The edge Gaussian function describes the scattered radiation from MLC-rounded edge and the area Gaussian function describes the scattered radiation increasing with irradiated area on the MLCs. The intensity distributions of the developed source model for case 2 and case 3 for collimator-defined field size of $20 \times 20 \text{ cm}^2$ are given in Figure 2.

To evaluate the effectiveness of the developed source model, measurements were made for various MLC-defined irregular or square fields. The calculated S_c data by using (1) the developed source model and (2) the conventional dual source model were compared with the measured data for MLC-defined field sizes of $4 \times 4 \text{ cm}^2$ to the collimator-defined field size within fixed collimator sizes, $10 \times 10 \text{ cm}^2$, $15 \times 15 \text{ cm}^2$, $20 \times 20 \text{ cm}^2$ and $25 \times 25 \text{ cm}^2$ (Figure 3).

Figure 1. A schematics showing the geometrical relationship of multi-leaf collimator (MLC) position relative to collimators in terms of beam’s eye view (BEV) and detector’s eye view (DEV) for (a) case 1, (b) case 2 and (c) case 3.
Figure 2. The relative intensity distributions of the MLC scatter source, (a) $ES_{\text{mlc,out}}$ for case 2 and (b) $ES_{\text{mlc,in}}$ for case 3 that contain the two Gaussian functions, respectively.

Figure 3. The comparison between the measured and calculated two S_e by using the dual-source model and the MLC scatter source model for MLC-defined square field sizes of $4 \times 4 \text{ cm}^2$ to the collimator-defined field size of (a) $10 \times 10 \text{ cm}^2$, (b) $15 \times 15 \text{ cm}^2$, (c) $20 \times 20 \text{ cm}^2$ and (d) $25 \times 25 \text{ cm}^2$. The vertical-dotted line shows the scatter interface of collimator-defined field size to separate between case 2 and case 3.