Feasibility of Mapping Transient Tumor Hypoxia using *in situ* Activation PET Imaging: A Simulation Study

Purpose: To determine the feasibility of quantifying transient tumor hypoxia using *in situ* activation PET imaging.

Material & methods: A 64Cu-ATSM autoradiography image of rat tumor, reported previously [1], was digitized and used to quantify heterogeneous tumor hypoxia regions, as shown in Fig 1. Micro-vessel densities (MVDs) were mapped from the image based on regional uptake of 64Cu-ATSM. The corresponding MVDs map (Fig 2a) was input to a reaction diffusion model [2] to simulate a steady state oxygen tension (pO_2) map (Fig 2b). The pO_2 map was input to the Ten Haken model [3] to simulate an *in situ* activation PET image (Fig 2c), using photon beam energies of 20-50 MeV. This “total” activation image includes both mobile and immobile 15O. An image of *in situ* activated mobile 15O (Fig 2d) was produced by subtracting the fast decay portion from the overall decay curve. Finally, the pO_2 map and *in situ* activated mobile 15O PET image were thresholded and compared. All simulations were performed in 2D for a vasculature size of 20 cm2 using MATLAB 2007b.

Results: A threshold value of 5 mmHg was used to define the hypoxia fraction (HF) on the pO_2 map (Fig 3a). A threshold value of 63% of the mean image intensity on the *in situ* PET image was used to define the HF on the mobile 15O image (Fig 3b). Both maps demonstrate comparable hypoxia distributions. The calculated HF or hypoxic regions to the overall tumor-bearing vasculature ratio was found to be similar, with 0.178 on the pO_2 map and 0.157 on the mobile 15O image.

Conclusions: Although a more accurate method to threshold the activation map needs to be established, the *in situ* activation approach to quantify tumor transient hypoxia is feasible. Additionally, a relationship between activity and mmHg needs to be established.

References: