Real-time 3D tumor localization for lung IGRT using a single x-ray projection

1 Impact

We present a novel 2D/3D image registration method that can support real-time IGRT using a single x-ray projection image. Future IGRT with this registration technology can track the tumor and visualize the patient’s 3D deformations continuously throughout the treatment delivery with little x-ray dose.

2 Method

2.1 2D/3D Registration Framework

We describe PML-SKR’s 2D/3D registration framework. PML-SKR uses kernel regression (eq. 1) to interpolate the patient’s n 3D deformation parameters \(c = (c^1, c^2, \cdots, c^n) \) separately from the on-board projection images \(\Psi(\theta) \) where \(\theta \) is the projection angle. It uses a Gaussian kernel \(K_{M^i, \sigma^i} \) with the width \(\sigma^i \) and a metric tensor \(M^i \) on projection intensity differences to interpolate the patient’s \(i \)th deformation parameter \(c^i \) from a set of \(N \) training projection images \(\{P(I \circ T(c_\kappa); \theta) \mid \kappa = 1, 2, \cdots, N\} \) simulated at planning time. Specifically, the training projection image, \(P(I \circ T(c_\kappa); \theta) \), is the DRR of a CT deformed from the patient’s planning-time 3D mean CT \(I \) with sampled deformation parameters \(c_\kappa = (c^1_\kappa, c^2_\kappa, \cdots, c^n_\kappa) \). \(T \) and \(P \) are the warping and the DRR operators, respectively. \(P \) simulates the DRRs according to the treatment-time imaging geometry, e.g., the projection angle \(\theta \).

In the treatment-time registration, each deformation parameter \(c^i \) in \(c \) can be estimated with the following kernel regression:

\[
c^i = \frac{\sum_{\kappa=1}^{N} c^i_\kappa \cdot K_{M^i, \sigma^i}(\Psi(\theta), P(I \circ T(c_\kappa); \theta))}{\sum_{\kappa=1}^{N} K_{M^i, \sigma^i}(\Psi(\theta), P(I \circ T(c_\kappa); \theta))},
\]

(1)

\[
K_{M^i, \sigma^i}(\Psi(\theta), P(I \circ T(c_\kappa); \theta)) = \frac{1}{\sqrt{2\pi\sigma^i}} e^{-\frac{d^2_{M^i}(\Psi(\theta), P(I \circ T(c_\kappa); \theta))}{2\sigma^i}}
\]

(2)

\[
d^2_{M^i}(\Psi(\theta), P(I \circ T(c_\kappa); \theta)) = (\Psi(\theta) - P(I \circ T(c_\kappa); \theta))^TM^i(\Psi(\theta) - P(I \circ T(c_\kappa); \theta)),
\]

(3)

where \(K_{M^i, \sigma^i} \) is a Gaussian kernel (kernel width= \(\sigma^i \)) that uses a Riemannian metric \(M^i \) in the squared distance \(d^2_{M^i} \) and gives the weights for the parameter interpolation in the regression.
3 Results

Figure 1 shows that PML-SKR reduces the minimum errors produced by kernel regressions that use the Euclidean metric ($M^i = I$).

2.2 Metric Learning and Kernel Width Selection

PML-SKR learns a metric tensor M^i with a corresponding kernel width σ^i for the patient’s i^{th} deformation parameter c^i using a Leave-One-Out (LOO) training strategy. At planning time, it samples a set of N deformation parameter tuples $\{c_\kappa = (c_1^\kappa, c_2^\kappa, \cdots, c_n^\kappa) \mid \kappa = 1, 2, \cdots, N\}$ to generate training projection images $\{P(I \circ T(c_\kappa); \theta) \mid \kappa = 1, 2, \cdots, N\}$ where their associated deformation parameters are sampled uniformly within three standard deviations of the values observed in the RCCTs. For each deformation parameter c^i in c, PML-SKR finds the best pair of the metric tensor M^i and the kernel width σ^i that minimizes the sum of squared LOO regression residuals among the set of N training projection images:

$$M^{i^*}, \sigma^{i^*} = \arg \min_{M^i, \sigma^i} \sum_{\kappa=1}^{N} \left(c_{\kappa}^i - \hat{c}_{\kappa}^i (M^i, \sigma^i) \right)^2, \quad (4)$$

$$\hat{c}_{\kappa}^i (M^i, \sigma^i) = \frac{\sum_{\chi \neq \kappa} c_{\chi}^i \cdot K_{M^i, \sigma^i}(P(I \circ T(c_\kappa); \theta), P(I \circ T(c_\chi); \theta))}{\sum_{\chi \neq \kappa} K_{M^i, \sigma^i}(P(I \circ T(c_\kappa); \theta), P(I \circ T(c_\chi); \theta))}, \quad (5)$$

where $\hat{c}_{\kappa}^i (M^i, \sigma^i)$ is the estimated value for parameter c_{κ}^i interpolated by the metric tensor M^i and the kernel width σ^i from the training projection images χ other than κ.

3 Results