Spot Scanning Proton Therapy – Treatment Planning

X. Ronald Zhu, PhD
Professor
Deputy Chief Clinical Physics, Proton
Department of Radiation Physics
MD Anderson Cancer Center
Houston, TX

AAPM Therapy Education Course
Proton Treatment Planning Issues
MO-E-BRCD-1, July 30, 2012

Acronyms

- SFO - Single field optimization:
 - Each field is optimized to deliver the prescribed dose to target volume(s):
 - SFUD - Single field uniform dose
 - SFIB - Single field integrated boost*

- MFO - Multi-field optimization or Intensity modulated proton therapy (IMPT):
 - All spots from all fields are optimized simultaneously
 - More flexible with more degrees of freedom – more conformal dose distribution
 - Complex dose distribution for each field

*Szu et al. PTCOG50 - 2011

SFO vs. MFO

<table>
<thead>
<tr>
<th>SFO</th>
<th>MFO (IMPT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Open Field" for simpler volumes</td>
<td>"Patch Field" for complex volumes</td>
</tr>
<tr>
<td>Uniform or non-uniform dose distributions</td>
<td>More versatile to get a good plan</td>
</tr>
<tr>
<td>Less sensitive to uncertainties</td>
<td>More sensitive to uncertainties</td>
</tr>
<tr>
<td>Use SFO plan if IMPT plan is not significantly better</td>
<td>Robustness of MFO is important</td>
</tr>
</tbody>
</table>
SFO vs. MFO (IMPT)

Field One
- 42 yr old male
- BOS/Chordoma
- Post resection

Field Two
- 42 yr old male
- BOS/Chordoma
- Post resection

Field Three
- 42 yr old male
- BOS/Chordoma
- Post resection
SFO vs. MFO (IMPT)

- 42 yr old male
- BOS/Chordoma
- Post resection

Spot Spacing & Lateral Margins

- Current TPS limits to:
 - Rect-linear spot positions
 - Lateral spot spacing, \(s \) is constant for each beam
 - Spot spacing in depth direction, depending on available proton beam energies (\(\Delta d = 0.1 \sim 0.6 \) cm for MDACC)

 \(s' = s \)

 - Lateral spot margins:
 - Allow one spot outside the planning target volume, \(s' < s \).
 - For better penumbra, \(s' \) can be slightly < \(s \).
 - \(s' \) is equivalent to block margin

Spot spacing

- Spot spacing
 \[
 s = \alpha \times FWHM_{air}
 \]

- What \(\alpha \) should be?

\(\alpha = 0.8 \)
\(\alpha = 0.65 \)
Delivery Constraints

- Spot spacing, \(s = \alpha \times \text{FWHM} \), \(\alpha \leq 0.65 \)
- Smaller \(\alpha \) is better for penumbra
- How small \(\alpha \) can be?
- Hitachi PROBEAT – minimum MU 0.005 per spot
- Current clinical TPS optimizer does not incorporate this constraint in the optimization process – similar to early days of IMRT
- Truncation errors could significantly degrade a optimized plan when converted to a deliverable plan
- If \(\alpha \) is too small, "MU starvation" effect – too many spots to share finite numbers of MU

Impact of Spot spacing

Squares -3 mm
Triangles - 7 mm

Zhu et al. Med. Phys. 2010
Margins & Target Volumes

- There is no smearing (except spot size)
- Current TPS does not support proximal & distal margins for scanning beam
- For single or parallel opposed beam in major axis directions, an approximated bsPTV* may be used for SFO.
- For others, a conventional "PTV" is used
- bsPTV does not applicable to MFO*.
- Plan robustness should be evaluated.

*Park et al. IJRBP 2011

bsPTV & Approximated bsPTV

Approximated bsPTV for field 1

Field 1
bsPTV & Approximated bsPTV

Field 1 Field 2

Approximated bsPTV – Example

- = CTV + Margins
- Margins:
 - Lateral: Distal margin ~ 1.1 cm
 - Posterior: ~ 0.5 cm
 - Else where: ~ 0.6 cm

Margins:
- Lateral: Distal margin ~ 1.1 cm
- Posterior: ~ 0.5 cm
- Else where: ~ 0.6 cm
Two lateral fields

26-year-old male
• Right parotid
• Acinic cell carcinoma
• CTV1 64 Gy(RBE)
• CTV2 60 Gy(RBE)
• CTV3 54 Gy(RBE)

Head & Neck – SFIB

26-year-old male
• Right parotid
• Acinic cell carcinoma
• CTV1 64 Gy(RBE)
• CTV2 60 Gy(RBE)
• CTV3 54 Gy(RBE)

Head & Neck – SFIB – Field 1

26-year-old male
• Right parotid
• Acinic cell carcinoma
• CTV1 64 Gy(RBE)
• CTV2 60 Gy(RBE)
• CTV3 54 Gy(RBE)
Head & Neck – SFIB – Field 2

- 26-year-old male
- Right parotid
- Acinic cell carcinoma
- CTV1 64 Gy(RBE)
- CTV2 60 Gy(RBE)
- CTV3 54 Gy(RBE)

Head & Neck - SFIB

- 26-year-old male
- Right parotid
- Acinic cell carcinoma
- CTV1 64 Gy(RBE)
- CTV2 60 Gy(RBE)
- CTV3 54 Gy(RBE)

Head & Neck – SFIB DVH
Head & Neck - SFIB

- Problem
 - Larger penumbra

- Solutions
 - Smaller spot size
 - Aperture

Head & Neck – MFO (IMPT)

- 67 yo male
- Squamous cell carcinoma
- Right base of tongue
- CTV66, CTV60 & CTV54
- 3 fields: G280°/C15°, G80°/C345° & G180°/C0°

- Simultaneous spot optimization
- Spot spacing = 1 cm
- Distal & prox. margins = 0 cm
- Lateral margin = 0.8 cm
Robust evaluation

- Is the plan robust with respect to the range & setup uncertainties?

Robust Evaluation
- Assuming isocenter moved ±3 mm
- Range uncertainties: ±3.5% of the range
- Total 9 plans including the nominal plan
- DVH band for each volume
- Maximum dose or minimum dose to each volume to see the worst case scenarios

Robustness Evaluation – H&N MFO IMPT with EA

- 57 yo male
- Squamous cell carcinoma
- Right tonsil
- CTV66, CTV60 & CTV54
- 3 fields: G310°/C30°
 G170°/C340°
 G180°/C90°
Summary

- Spot scanning proton therapy is challenging, exciting, and rewarding:
 - SFO (SFUD & SFIB) & MFO (IMPT)

- Further development/improvement:
 - Robust optimization for SFO & MFO
 - Better optimizer in general
 - Implementation of bsPTV for SFO by TPS
 - Aperture (TPS modeling) for scanning
 - Moving target with scanning beam
 - Patient QA program
 - Dose algorithm

Acknowledgements

- Falk Poenisch, PhD
- Narayan Sahoo, PhD
- Richard Wu, MS
- Jim Li, BS
- Xiaodong Zhang, PhD
- Jennifer Johnson, MS
- Heng Li, PhD
- Richard Amos, MS
- Wei Liu, PhD
- Radhe Mohan, PhD
- Michael Gillin, PhD
- Others
- M. Brad Taylor, BS
- Charles Holmes, BS
- Matt Kerr, BS
- Others
- Seungtaek Choi, MD
- Steven Frank, MD
- David Grosshans, MD
- Andrew Lee, MD
- Anita Mahajan, MD
- Others
- Mayank Amin, CMD
- Matt Palmer, CMD
- Beverly Riley, CMD
- Others
Thank you!