Image-Guidance for Breast Radiotherapy

Jan-Jakob Sonke

Department of Radiation Oncology The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital

NKI-AVL

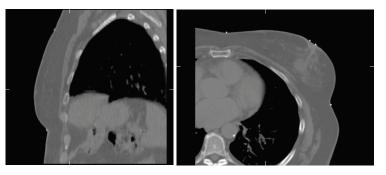
Disclosure

- Our department has research collaborations with:
 - Elekta Oncology Systems
 - Philips Radiation Oncology Systems
 - Ray Search Laboratories
- Our department licenses software to:
 Elekta Oncology Systems

Acknowledgements

Tanja Alderliesten Sandra Vreeswijk Anja Betgen Corine van Vliet-Vroegindeweij Peter Remeijer Gerben Borst

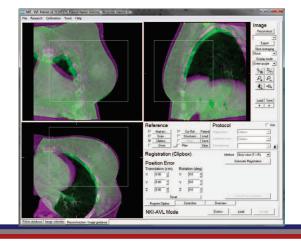
Rajko Topolnjak

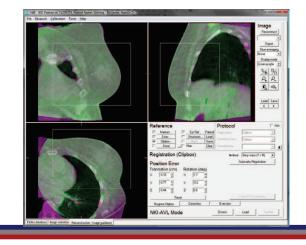


Content

- CBCT versus portal image analysis
- · Geometrical Uncertainties in breast RT
- IGRT for deep inspiration breath-hold
- IGRT for pre-operative partial breast irradiation
- Adaptive RT for breast cancer

Cone Beam CT Guided Breast RT @ NKI-AvL


Geometrical Variability in Breast Radiotherapy


Protocol

- · Patients are treated in 28 fractions with
- 50.7 Gy to the whole breast and 64.4 to the boost area
- · Registration on bony anatomy
- Correction using a shrinking action level protocol with N=3 and initial action level α=9 mm

Image Registration

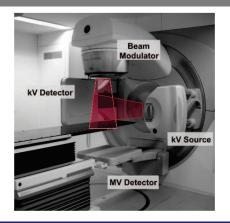


Image Registration

Cone Beam CT versus Portal Image Analysis

Introduction

Study

- · 20 breast cancer patients, treated in a supine position
- CBCT scans were regularly acquired for a shrinking action level (SAL) setup correction protocol
- The EPID images were obtained during the same fraction from the opposing oblique treatment beams and manually registered to the DRRs in the 2D coordinate system of the EPID (U,V).
- For both EPID and CBCT the registrations were performed on the ribs

Study

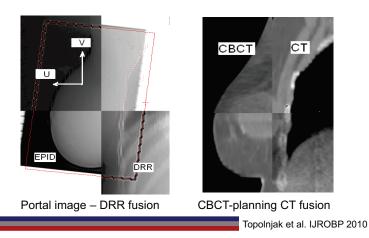
- Analyze position variability based on CBCT in three orthogonal directions
 - Without corrections
 - For offline correction protocol (SAL)
- Compare portal image analysis with CBCT analysis in the EPID coordinate system (U,V)

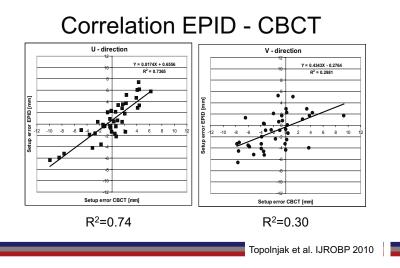
Bony Anatomy Position Variability CBCT

	No	-correc	ction		Offline	
	CC	LR	AP	CC	LR	AP
M (mm)	-1.1	-2.1	2.0	-0.5	-1.0	0.8
Σ (mm)	3.8	3.1	2.5	1.7	1.4	1.2
σ (mm)	2.8	2.2	2.6	3.1	2.3	3.0

Topolnjak et al. IJROBP 2010

Topolnjak et al. IJROBP 2010


Bony Anatomy Position Variability CBCT


	No	-correc	tion		Offline	
	CC	LR	AP	CC	LR	AP
M (mm)	-1.1	-2.1	2.0	-0.5	-1.0	0.8
Σ (mm)	3.8	3.1	2.5	1.7	1.4	1.2
σ (mm)	2.8	2.2	2.6	3.1	2.3	3.0
Margin	11.5	9.2	8.0	6.4	5.2	5.1

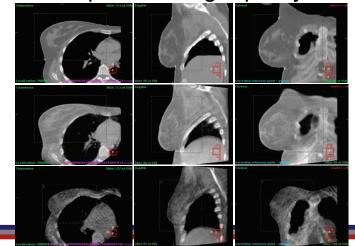
Margin= $2.5\Sigma + 0.7\sigma$

Topolnjak et al. IJROBP 2010

2D versus 3D imaging

Geometrical Uncertainties for EPID

	Off	line	Online		
	U	V	U	V	
M (mm)	-0.9	-0.8	-0.8	-0.5	
Σ (mm)	2.2	3.3	1.1	2.5	
σ (mm)	2.9	2.9	2.0	3.0	
Margin	7.7	10.3	4.0	8.2	

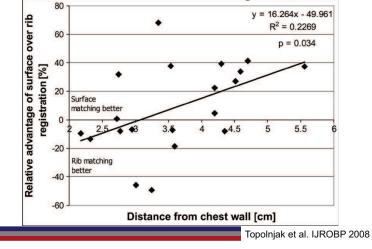

Topolnjak et al. IJROBP 2010

Geometrical Uncertainties for Tumor Bed Boost

Method

- 20 breast cancer patients
- Three registration methods:
 - Bony anatomy
 - Breast surface
 - Tumor bed
- Compare residual geometric uncertainties

Improved image quality


Boost position variability – Surrogate accuracy

	No-correction				Bone			Surface		
	CC	LR	AP	CC	LR	AP	CC	LR	AP	
M (mm)	1.4	0.2	-3.1	0.5	-0.9	0.9	-0.4	1.0	-0.3	
Σ (mm)	3.0	3.8	2.7	2.0	2.3	1.5	1.8	1.7	1.1	
σ (mm)	2.6	3.2	2.9	1.8	2.3	1.9	1.7	1.6	1.6	
Margin	8.3	10.6	7.7	5.6	6.5	4.5	5.1	4.8	3.3	

Margin= $2.5\Sigma + 0.3\sigma$

Topolnjak et al. IJROBP 2008

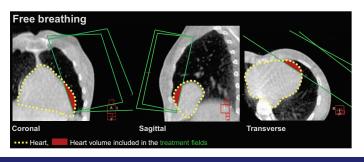
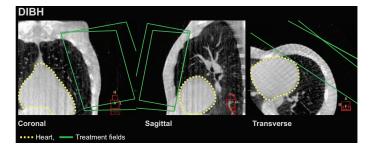
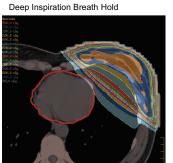

Relative Surface surrogate benefit

Image Guidance for Deep Inspiration Breath-hold

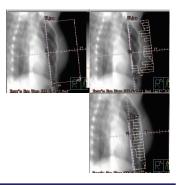

Introduction

- Left-sided breast cancer radiation
 - Increased risk for long term heart disease

Introduction


- To decrease the irradiated heart volume
 - Voluntary deep inspiration breath hold (DIBH)

Treatment planning



Treatment planning

Planning:

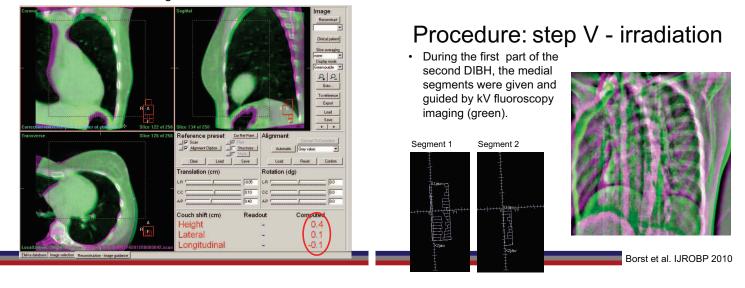
- IMRT plan
- Max.I 3 segments per beam
- 1 open en 2 IMRT segments

Free breathing vs Breath hold CBCT

Patient set-up


 Under kV fluoroscopy guided imaging the patient was instructed for 2 deep in- and expirations before the DIBH position was taken.

• During the DIBH position a CBCT was performed (30 sec.)


CBCT before registration

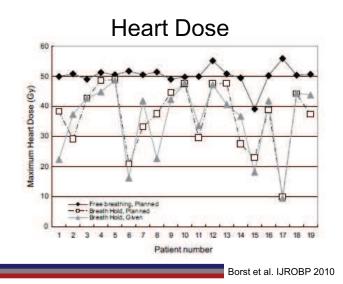
CBCT after registration

CBCT after registration

Procedure: step VI - irradiation

- Hereafter, the open medial fields were given and registered by online EPID images.
- This procedure was repeated for the lateral fields during the third DIBH.

Open field



Borst et al. IJROBP 2010

Post Correction Residual Error

 Open field treatment portal used for image registration

		Inter- fraction		ra- tion
	U	V	U	V
M (mm)	0.3	-1.3	-0.4	-0.2
Σ (mm)	1.4	1.6	0.8	0.3
Σ (mm) σ (mm)	1.6	1.8	1.1	0.8
		_		orst et a

Adaptive RT for breast cancer

Dosimetric Impact of Seroma Reduction on Boost Planning Volume

Seroma reduction during RT

CT1 scan

CT2 scan

CT1: initial planning CT obtained before whole-breast irradiation CT2: second CT obtained during a patient's RT course

Dosimetric Impact of Seroma Reduction on Boost Planning Volume

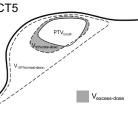
- Retrospective comparison between three different boost RT delivery and planning techniques:
 - SEQ: a sequential boost plan
 - SIB: a simultaneous integrated boost plan
 - SIB-ART: a SIB adaptive radiation therapy plan

	SEQ	SIB	SIB-ART		
Whole breast	CT1	CT1	CT1	CT2	
	25x2Gy	28x1.81Gy	15x1.81Gy	13x1.81Gy	
Boost	CT3	CT1	CT1	CT2	
	8x2Gy	28x0.49Gy	15x0.49Gy	13x0.49Gy	

Dosimetric Impact of Seroma Reduction on Boost Planning Volume

- 21 Patients
- Seroma volume reduction:
 - Significant total reduction during RT (p<0.001, one sample t test)
 - Mean (Range): 62 (38~85)%
 - 77% of total reduction in first three weeks of RT
- · Evaluation on CT scans used for planning:
 - Target coverage: relative volume of $\text{TV}_{\text{breast}}$ and $\text{PTV}_{\text{boost}}$ receiving ≥95% of the prescribed dose
 - $V_{excess-dose}$: undesired volume (outside PTV_{boost}) receiving \geq 95% of the total dose

Dosimetric Impact of Seroma Reduction on Boost Planning Volume


- Evaluation of total dose distributions on CT5
 - Target coverage
 - V_{excess-dose}
 - V_{107%(breast-dose)}
 - V_{95%(total-dose)}
 - HD_{max}: maximum physical heart dose
 - LD_{mean}: mean physical lung dose
- Correlation seroma volume / reduction and differences between the treatment plans for
 - $V_{\text{excess-dose}}$
 - V_{107%(breast-dose)}
 - V_{95%(total-dose)}

Dosimetric Impact of Seroma Reduction on Boost Planning Volume

Variable		mean		Friedman	Wilcoxon
	SEQ	SIB	SIB-ART	р	
V _{107%(breast-dose)} (cm ³)	584.5	536.8	485.5	<0.001	SIB-ART <sib<seq< td=""></sib<seq<>
V _{95%(total-dose)} (cm ³)	273.6	289.4	234.2	<0.001	SIB-ART <seq<sib< td=""></seq<sib<>
V _{excess-dose} (cm ³) Planning	134.4	58.3	36.1	<0.001	SIB-ART <sib<seq< td=""></sib<seq<>
V _{excess-dose} (cm ³) CT3	134.4	150.1	95.0	<0.001	SIB-ART <seq<sib< td=""></seq<sib<>
HD _{max} * (Gy) Left	39.9	36.9	35.8	0.001	SIB-ART <sib<seq< td=""></sib<seq<>
LD _{mean} * (Gy)	4.2	4.6	4.5	0.001	SEQ <sib-art<sib< td=""></sib-art<sib<>

Summary

- Considerable geometrical uncertainties limit the precision in breast RT
- Image guided correction strategies
 effectively manage setup errors
- Adaptive RT has the potential to account for shape and volume changes

