Electron Radiotherapy: Past, Present, and Future

John A. Antolak, Ph.D., Mayo Clinic, Rochester, MN
Kenneth R. Hogstrom, Ph.D., Louisiana State University, Baton Rouge, LA

Therapy SAMS Session TH-A-BRCD-1
AAPM Annual Meeting, Charlotte, NC
August 2, 2012

ABSTRACT

Electron beams have been used for treating cancer patients for many years. However, with IMRT, IGRT, proton therapy, and new brachytherapy techniques coming to the forefront, does electron beam therapy still have a role in today’s clinics? The physics of electron beam radiotherapy is fairly well understood, but it remains an underutilized modality at most facilities. After starting with a historical overview to provide an appropriate perspective, the session will discuss current technology for generating electron beams and measuring their dose distributions. General principles for planning electron radiotherapy, including both established and new techniques will be a significant focus. The use of electron beams in special procedures, such as total skin electron irradiation and intraoperative treatments, will be discussed. Treatment planning requires accurate dose calculations, so dose calculation methodologies will be reviewed. Finally, we will briefly share our vision of the future of electron radiotherapy.

LEARNING OBJECTIVES

1. Learn about the history of electron radiotherapy that is relevant to current practice.
2. Understand current technology for generating electron beams and measuring their dose distributions.
3. Understand general principles for planning electron radiotherapy
4. Be able to describe how electron beams can be used in special procedures such as total skin electron irradiation and intraoperative treatments.
5. Understand how treatment planning systems can accurately calculate dose distributions for electron beams.
6. Learn about new developments in electron radiotherapy that may be common in the near future.
SUGGESTED READING MATERIAL

Background in Electron Beam Physics and Dosimetry

Electron Beam Dose Calibration

Clinical Electron Beam Dosimetry

Effect of Tissue Heterogeneity
Electron Pencil-Beam and New Dose Algorithms

Electron Beam Treatment and Treatment Planning

General

Electron Bolus and Conformal Therapy

Collimation

Specialized Electron Beam Therapy Techniques

Extremities

Electron Arc Therapy

Total Skin Electron Therapy

Intraoperative Electron Therapy

Craniospinal Irradiation

Total Scalp Irradiation

REVIEW QUESTIONS

1. What is the principle of side-scatter equilibrium? Explain how this principle affects the field-size dependence of depth dose and output. Explain how it can cause output to falloff faster than inverse square.

2. Discuss the energy dependence of the following depth dose quantities – \(D_s, R_{90}, R_p, \) and \(D_x \).

3. Explain the field size dependence of depth dose, i.e. how it affects \(D_s, R_{90}, R_p, \) and \(D_x \).

4. Discuss how penumbra depends on depth and air gap as a function of energy.

5. What is the square root method for depth dose?

6. What influence does air gap have on output and depth dose?

7. How does angled incidence affect depth dose and penumbra?

8. How does a sharp surface discontinuity affect the underlying dose distribution, i.e. where does the volumes of increased/decreased dose lie? Discuss the resulting clinical impact for the nose and ear.

9. Explain why abutted chest wall fields sometimes give significant lung dose, i.e., how the penetration of the dose distribution increased in lung tissue.

10. Discuss the influence of hard bone (e.g. mandible) on the underlying dose distribution. Is backscatter dose from bone clinically significant? Why is there an increased dose in bone, and is it clinically significant?

11. What is the relationship between lead thickness (mm) required to stop incident electrons and electron energy, \(E_{p,0} \) (MeV)? List three clinical reasons for skin collimation and give a clinical example for each.

12. How does increased dose from electron backscatter depend on energy \(\bar{E}_c \) at the tissue-lead interface? How can the patient be protected from backscattered dose from internal collimation?

13. Discuss the dose distribution behind a 1-cm diameter lead block, and how does it vary with energy and air gap? How can this type of block be used to treat retinoblastoma?

14. Define electron bolus. List three clinical reasons for electron bolus and give a clinical example for each.

15. Give two methods for verification of the intended use of electron bolus.

16. Explain the three different classifications of abutting electron fields and a clinical example of each. How is dose inhomogeneity resulting from field abutment minimized during the course of treatment?

17. In treatment of whole limb with electrons, six to eight fields (with falloff) spaced as evenly as possible around the limb’s axis can be used. How does the depth dose change relative to that of a single beam? Why is arc therapy with a narrow field (e.g. 5-cm wide at isocenter) a poor option?

18. In electron arc therapy of the chest wall, explain how and why the depth dose changes relative to that of the unarced beam. Why is the width of the secondary electron insert narrower in the portion used to irradiate the superior part of the chest wall than the inferior part? Write the equation relating the field width, \(W_i \), for treating a cross-sectional anatomy with a mean radius of curvature, \(\rho \), to that of the central axis width, \(W_o \), treating a cross-sectional anatomy with a mean radius of curvature \(\rho_0 \). Why is skin collimation required for electron arc therapy of the chest wall?

19. For total skin therapy using the Stanford technique, explain (1) why each patient is treated with two beams at gantry angles 90° ± 0, (2) why the light field edges from the two fields are separated by a large gap, and (3) why a 1-cm thick scatter plate directly in front of the patient improves dose homogeneity.

20. Describe the CT lookup tables and beam data input necessary to commission a pencil beam dose algorithm. What comparisons with dose measurements would you make to verify proper data input prior to clinical use? What are the strengths of the Hogstrom pencil beam model in its clinical application? Under what circumstances will the algorithm have dose inaccuracies greater than 5%?