Transitioning from 3D IMRT to 4D IMRT and Roles of Image-Guidance

Ping Xia, Ph.D
Cleveland Clinic, Cleveland

Disclosure

" I received research grants from Siemens Medical Solutions, Phillips, and BrainLab.

Learning Objectives

- " Understand various currently available IGRT and 4DCT technologies
- " Understand how these technologies can be used to improve dose delivery precision and accuracy, in particular with dynamically changing tumor volumes.
- " Understand the challenges and strategies in clinical implementation of 4D-IMRT in three specific cancer sites - head and neck, and prostate, and lung.

IGRT Is Necessary for IMRT

- " Highly conformal dose distributions produced from IMRT require precise delivery methods of IGRT
- " IGRT permits us to reduce the PTV margins while better protecting normal tissue.
- "IGRT allows us to precisely correlate patient anatomy of the day with the planned dose distributions.

KV/MV-Cone Beam CT Flekta KV Varian KV Siemens MV

Organ Motion Tracking Systems KV X-ray Tracking

Gathering Evidence

- 67 patients, who received partial brain irradiation under daily IGRT.
- 2008 daily images were analyzed.
- " According to Van Herk formulae, setup margins were calculated.

Setup Margins for Partial Brain Treatment

	Lateral (mm)	Vertical (mm)	Longitudinal (mm)
Setup Margin Without Daily IGRT	4.0	4.7	5.0
Setup Margin With Daily IGRT	0.8*	0.7*	0.6*

Van Herk Formulae: M = $2.5(\Sigma) + 0.7(\sigma)$ * Assume precise implementation

Gathering Evidence

- 51 female patients, who received pelvis irradiation for endometrial cancer under daily IGRT
- 1259 daily images were analyzed.
- According to Van Herk formulae, setup margins were calculated.

Setup Error for Pelvis Treatment

	Lateral	Vertical	Longitudinal
	(mm)	(mm)	(mm)
Setup Margin Without Daily IGRT	11.6	9.0	18.2
Setup Margin With Daily IGRT	1.9*	1.7*	1.9*

Van Herk Formulae: M = 2.5(Σ) + 0.7(σ)
* Assume precise implementation

PTV Margin Reduction

- "Under IMRT-IGRT, abundant evidence demonstrated that PTV margins are reduced and normal tissue toxicity are decreased. Example: reduced rectal toxicity in prostate cancer; preserve parotid function in H&N cancer.
- " The question is: Why 4D-IMRT?

Clinical Requirements of 4D IMRT

Organ movements and anatomic changes in patients require us to explicitly include the time variable into both planning and delivery.

Lung Tumor	Prostate	Head and Neck	
Second	Day	week	
	Time Sca	e	

Positional Correction Is Not Enough

- With abundant information gather from daily IGRT, we recognize that positional correction is not enough.
- The non-rigid patient's positional changes and dynamic anatomical changes require adaptive RT.
- " 4D IMRT allows us to take these changes into clinical considerations.

4D IMRT - Online or Offline? Offline 4D IMRT " Offline 4D IMRT is the first logical step. Offline 4D IMRT can correct for systematic changes – slow tumor volume changes or systematic positional changes " Offline 4D IMRT permits a streamline workflow, less demanding on resources. Offline or Online 4D IMRT? " Offline 4D IMRT can not account for daily nonrigid anatomic changes - rectal or bladder changes in the prostate cancer " Offline 4D IMRT can not account for daily deformable positional changes – flexible neck positions in H&N cancer Online 4D IMRT can correct for random positional errors

Offline 4D-IMRT Work Flow

- Acquire a new planning CT 10 minutes.
- Deform all contours (including tumor volume and sensitive structures) the initial planning CT to the new planning CT – 2 minutes.
- Physician review and edit the tumor volume (10 - 30 minutes).
- Replan by applying the initial planning objectives to the new plan and fine tuning the plan – 2 hours

Multiple Plan Pools For 4D IMRT

Poor Man 4D-IMRT Strategies

- " Re-plan every day not Ready
- " Adjust IMRT segments online not ready yet
- Create multiple adaptive IMRT plans Pseudo-4D IMRT

Xia P, et. al, Med. Phys, 37(9) 2010, 5006-5-13

Multiple Adaptive IMRT Plans

- " Create a set of IMRT plans with a series of presumed prostate positions while keeping the pelvic lymph nodes stationary.
- " Use IGRT to detect the prostate position in relative to the pelvic bony anatomy.
- " Choose an IMRT plan that best matches the prostate position of the day.

Prepare Possible Instances

			_

Treatment Procedure For Multiple Adaptive Plan IMRT

- MV-CBCT was first aligned to the pelvic bone, and then aligned to implanted markers.
- The patient setup error (shifts from bone alignment) was corrected.
- The prostate movement was determined by the differences of shifts obtained from the two image registrations.
- A proper IMRT plan was chosen for treatment according to the detected prostate position.

Tomorrow's 4D IMRT 4D IMRT Is Required From **Clinical Necessitates** 4D-IMRT is required from clinical necessitates . because of non-rigid positional changes. . because of dynamic anatomical changes. . because of highly conformal dose distributions. . because of increasing use of hypo-fractionation. " 4D-IMRT allows us to . correct both systematic and random errors. . use smaller or zero planning margin. . Achieve high precision delivery Is Online (Real Time) Planning a Reality? Real time planning will become technically . with a CT unit in the treatment room. . with fast computational power (GPU) (~100 times fast) . with robust automatic contouring tools. . with remote planning and viewing tools. . with ability to accumulate total dose. " Real time planning demands efficient workflow.

Cumulative Dose Distributions

- Researchers are actively developing a way to display accumulative dose distributions from multiple planning CTs.
- One can use deformable imaging registration method, but it is not perfect.
- Why we need cumulative dose distributions?

Why We Need Cumulative Dose?

- To correlate dose with outcome
 33%
- 2. To design new adaptive plan
 33%
- 3. To satisfy radiation oncologist's request

Summary

- " 4D IMRT will be the future of radiotherapy, especially with increasing use of hypofraction treatment
- 4D IMRT can accommodate systematic and random changes in patient anatomy and treatment position.
- 4D IMRT requires efficient and effective IGRT tools, and tools to facilitate real time planning such as deformable image registration, fast real time planning.
- With these tools, adaptive treatment is clinical feasible and practical.