Status and Challenges for New Technologies: AAPM perspective

Eric Ford, PhD
University of Washington, Seattle

AAPM-SEFM-AMPR Joint Symposium
AAPM Charlotte, NC, June 19, 2012

Disclosures

Chair: AAPM Work Group on Prevention of Errors

Outline

• Cost / effectiveness of new technology
 Clinical trials
 Spending more = better clinical results?

• Safety / quality aspects
 Implementing new technology
 Education and safe use
 Identifying risks
Costs

Medicare Expenditures Circa 2002

Source: Alhassani et al. NEJM, 2012

Benefits

- Often curative
- 800,000 patients / year in N. America
- ~70% of all cancer patients
Question: Does spending more result in better outcomes?

Quality and Outcomes

TROG 02.02

RT+cis +/- TPZ for H&N SCC

- 820 plans reviewed post-Tx
- 208 plans (25%) were not compliant with protocol
- In 97 / 208 (47%) violation was expected to have a major impact

Peters et al. JCO, 28(18), 2996, 2010

Quality and Outcomes

Seriously non-compliant (12% of plans)

Peters et al. JCO, 28(18), 2996, 2010
Question: Does spending more result in better outcomes?

Answer: Sometimes, but depends how well the procedure is performed.

Key Points
- There will be more emphasis on comparative effectiveness research.
- How well procedures are done is at least as important as which procedures are done.

- How does a physicist fit into all this?
- What is AAPM’s role?
AAPM Role

TG113: Practice Standard for Clinical Trials

- Identify physics practice standards that impact the quality of data for clinical trials and the treatment of patients in the imaging, planning, and delivery chain
- Propose achievable standards of accuracy for each part of the chain based on published reports
- Provide guidance to physicists, QA organizations, and those who design clinical trials on addressing issues in radiotherapy that are most likely to cause inconsistencies in treatment

Slide courtesy of Jean Moran

Charge of AAPM Task Group 113

- Identify physics practice standards that impact the quality of data for clinical trials and the treatment of patients in the imaging, planning, and delivery chain
- Propose achievable standards of accuracy for each part of the chain based on published reports
- Provide guidance to physicists, QA organizations, and those who design clinical trials on addressing issues in radiotherapy that are most likely to cause inconsistencies in treatment

Slide courtesy of Jean Moran
Roadmap for New Technology

- Development
- Early researchers / vendors

- Expert Users
- Reports - Institutional

AAPM Task Group Reports

<table>
<thead>
<tr>
<th>TG179</th>
<th>2012</th>
<th>IGRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TG148</td>
<td>2011</td>
<td>Tomotherapy</td>
</tr>
<tr>
<td>TG135</td>
<td>2011</td>
<td>CyberKnife</td>
</tr>
<tr>
<td>TG101</td>
<td>2010</td>
<td>SBRT</td>
</tr>
<tr>
<td>TG142</td>
<td>2009</td>
<td>QA for linacs</td>
</tr>
<tr>
<td>TG119</td>
<td>2009</td>
<td>IMRT commissioning</td>
</tr>
<tr>
<td>TG76</td>
<td>2006</td>
<td>Respiration</td>
</tr>
</tbody>
</table>

AAPM Task Group Reports

- Planned or under review

<table>
<thead>
<tr>
<th>TG178</th>
<th>Gamma SRS calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>TG198</td>
<td>Implementation of TG142</td>
</tr>
<tr>
<td>TG210</td>
<td>Linac acceptance testing</td>
</tr>
<tr>
<td>TG218</td>
<td>Tolerances for IMRT QA</td>
</tr>
</tbody>
</table>
ASTRO White Papers on Safety

- **Introduction** Fraass PRO, 1(3), 188, 2011
- **IMRT** Moran et al. 2011
- **SBRT** Solberg et al. 2012
- **Peer-review** Marks et al. – in review
- **IGRT** Jaffray et al. – in review
- **HDR** in review

ASTRO White Paper: SBRT Safety

- 3D IGRT at each fraction
- Special staffing
- Specific training
- Independent check:
 - small FS dosimetry
 - TPS dose calc
 - End-to-end tests

Prescriptive Recommendations

Limitations

- Slow in coming
- Static snapshot
- Physics (QA/measurement) focus
- Not “hands on” training
- Not all-comprehensive
Example Pitfall: Frame-based SRS

- Frame placed in the morning
- Slip on head: prior to Tx, during Tx
- Result: Wrong location

Example Pitfall: Frame-based SRS

Example Pitfall: Frame-based SRS

Better placement
Example Pitfall: Frame-based SRS

Preventive Measures
- Eliminate error
 - Double check placement
- Detect error
 - Repeat depth helmet measurement
 - Patient engagement
 - Pt will feel frame slip

Alternate Approach to QI

Hazard Analysis: Identify the Highest-Risk Areas

Alternate Approach to QI
Alternate Approach to QI

TG100: Failure Mode and Effects Analysis

Report Pending

Failure Mode and Effects Analysis

FMEA Recipe
- Brainstorm for problems ("failure modes")
- Score each problem for importance

FMEA Scoring System
- How often does it occur? \(O \)
- How easy is it to spot? \(D \)
- How serious is it if undetected? \(S \)

Risk Priority Number = \(O \times D \times S \)
Example FMEA

- 53 failure modes, 43 scored
- Corrective action on top 4

<table>
<thead>
<tr>
<th>Failure Mode</th>
<th>n</th>
<th>Before</th>
<th>After</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correction</td>
<td>4</td>
<td>273</td>
<td>163</td>
<td>0.03</td>
</tr>
</tbody>
</table>

- Effort
 - Core group of 7
 - Other staff (12)
 - Facilitator

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total: 5 hours @</td>
<td>Total: 1.5 hours @</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 hours</td>
</tr>
</tbody>
</table>

Ford et al. in preparation

Conclusions

- Safety is not different from Quality
- Safety / Quality are crucial focus areas
- Prescriptive QA is good but more is needed
- Hazard analysis is one tool

Shameless Advertisement

AAPM Summer School
Quality and Safety in Radiotherapy
June 16 – 20, 2013
Colorado Springs, CO
Training

Best formal training is in residency
Further training often vendor-supplied.
Limitations:
 • short (often few days) and one-time only
 • procedures oriented
 • no evaluation of learning

Competency Assessments