Update on Medical Physics Practice Guideline #1
Jonas Fontenot, Ph.D.

MPPG #1
Evaluation and Quality Assurance of X-ray Based Image Guided Radiotherapy Systems

Committee Members:
Jonas Fontenot (chair) – Mary Bird Perkins Cancer Center
Andrew Jensen – Mayo Clinic
Jack Yang – Monmouth Medical Center
Hassaan Alkhatib – Richland Memorial Hospital
Jeff Garrett – Mississippi Baptist Medical Center
Steve McCullough – Methodist Richardson Cancer Center
Brent Parker – University of Texas Medical Branch at Galveston

Overview
• Use of imaging systems for daily alignment and localization in radiation therapy IGRT is expanding rapidly
• Challenges for the therapy physicist
 – New technology
 – Not traditionally associated with clinical therapy physics
Rationale

- IGRT systems come in many flavors
 - Megavoltage imaging systems
 - Two-dimensional
 - Three-dimensional
 - Kilovoltage imaging systems
 - Two-dimensional
 - Gantry-mounted
 - Room-mounted
 - Three-dimensional
 - Gantry-mounted
 - Room-mounted

Rationale

- Guidance documents are available
 - TG-58
 - TG-75
 - TG-101
 - TG-104
 - TG-135
 - TG-142
 - TG-148
 - TG-179

- Obstacles to successful implementation of an IGRT program
 - Unfamiliarity with technology
 - Variety/complexity of guidance documents
 - Few process descriptions

Goals

- “Clinical recipe” for the solo physicist
- Inform the reader of the needs of this particular technology (time, effort, resources)
- Succinctly state the minimum acceptable standards for using IGRT, similar to ACR-ASTRO technical standards
- Provide necessary references for further investigation
Intended Users
- Medical physicists
 - What is required for safe and effective use?
 - Tools
 - Time/effort
 - Procedures
- Administrators
 - How much will it cost?

Approach
- Survey and consolidate existing TG recommendations
- Survey of IGRT practices at MPPG members’ institutions
 - University clinics
 - Community clinics
- Expansion of process descriptions, categorized by IGRT approach
- Address applicable areas of need identified by SPG

Elements of Guidelines
- Staff Responsibilities
- Implementation Guidelines
 - Staffing/time
 - Equipment
 - Commissioning/quality assurance
 - Process descriptions
 - Staff training
 - Common pitfalls
Staff Responsibilities

- IGRT implementation requires a team approach
 - Radiation Oncologist
 - Patient positioning procedures
 - Imaging modalities/frequencies
 - Registration targets/thresholds
 - Review
 - Medical Physicist
 - Acceptance/Commissioning
 - Quality assurance program
 - Standard operating procedures (with radiation oncologist)

Staff Responsibilities

- IGRT implementation requires a team approach
 - Medical Dosimetrist
 - Generation and transfer of IGRT structures
 - Radiation Therapist
 - Implements IGRT strategy

Implementation Guidelines
Example: kV-CBCT

- Resources
 - Staffing/time
 - Acceptance/commissioning: 1.5-2 days
 - Routine quality assurance
 - Daily: 10-15 minutes
 - Monthly: 1-2 hours
 - Annually: 4-8 hours
 - Ongoing (troubleshooting, upgrade, repair): 1-2 hrs/wk
 - Equipment
 - CatPhan, AAPM CT phantom, or equivalent
 - Ionization chamber
 - Ball-bearing phantom or equivalent
Implementation Guidelines
Example: kV-CBCT

• Acceptance/commissioning
 – Customer Acceptance Procedures
 – RV/OIS integration
 – Routine QA baselines
• Routine quality assurance
 – Daily
 • Interlocks, phantom localization/repositioning/shift
 – Monthly
 • Image quality
 – Annually
 • Imaging dose
 • Dx-Tx coincidence
• Upgrade/Repair
 – Repeat QA baselines upon major upgrade or replacement

Implementation Guidelines
Example: kV-CBCT

• Staff training
 – Medical Physicist
 – Dosimetrist/Therapists
• Common pitfalls
 – X-ray tube performance (kV accuracy, mAs linearity, etc) may be required by individual state regulatory agencies

Conclusions

• IGRT implementation and QA is challenging
• There are QA elements common to all x-ray based IGRT systems
 – Safety
 – Image quality
 – Geometric fidelity
 • Scaling
 • Tx-Dx iso
 • Table shifts
 – Dose
• A successful MPPG1 will improve the quality of clinical support for various IGRT strategies
Thank You