Update on Medical Physics Practice Guideline #1

Jonas Fontenot, Ph.D.

MPPG #1

Evaluation and Quality Assurance of X-ray Based Image Guided Radiotherapy Systems

Committee Members:

mmittee Members:
Jonas Fontenot (chair) – Mary Bird Perkins Cancer Center
Andrew Jensen – Mayo Clinic
Jack Yang – Monmouth Medical Center
Hassaan Alkhatib – Richland Memorial Hospital
Jeff Garrett – Mississippi Baptist Medical Center
Steve McCullough – Methodist Richardson Cancer Center
Brent Parker – University of Texas Medical Branch at Galveston

2

Overview

- Use of imaging systems for daily alignment and localization in radiation therapy IGRT is expanding rapidly
- Challenges for the therapy physicist
 - New technology
 - Not traditionally associated with clinical therapy physics

3

Rationale • IGRT systems come in many flavors - Megavoltage imaging systems • Two-dimensional • Three-dimensional - Kilovoltage imaging systems • Two-dimensional - Gantry-mounted - Room-mounted • Three-dimensional - Gantry-mounted • Room-mounted - Room-mounted

Rationale

- · Guidance documents are available
 - TG-58
- TG-135
- TG-75
- TG-142
- TG-101
- TG-148
- TG-104
- TG-179
- Obstacles to successful implementation of an IGRT program
 - Unfamiliarity with technology
 - Variety/complexity of guidance documents
 - Few process descriptions

5

Goals

- "Clinical recipe" for the solo physicist
- Inform the reader of the needs of this particular technology (time, effort, resources)
- Succinctly state the minimum acceptable standards for using IGRT, similar to ACR-ASTRO technical standards
- Provide necessary references for further investigation

6

Intended Users

- Medical physicists
 - What is required for safe and effective use?
 - Tools
 - Time/effort
 - Procedures
- Administrators
 - How much will it cost?

Approach

- Survey and consolidate existing TG recommendations
- Survey of IGRT practices at MPPG members' institutions
 - University clinics
 - Community clinics
- Expansion of process descriptions, categorized by IGRT approach
- Address applicable areas of need identified by SPG

Elements of Guidelines

- Staff Responsibilities
- Implementation Guidelines
 - Staffing/time
 - Equipment
 - Commissioning/quality assurance
 - Process descriptions
 - Staff training
 - Common pitfalls

Staff Responsibilities

- IGRT implementation requires a team approach
 - Radiation Oncologist
 - Patient positioning procedures
 - Imaging modalities/frequencies
 - Registration targets/thresholds
 - Review
 - Medical Physicist
 - Acceptance/Commissioning
 - Quality assurance program
 - Standard operating procedures (with radiation oncologist)

10

Staff Responsibilities

- IGRT implementation requires a team approach
 - Medical Dosimetrist
 - Generation and transfer of IGRT structures
 - Radiation Therapist
 - Implements IGRT strategy

11

Implementation Guidelines Example: kV-CBCT

- Resources
 - Staffing/time
 - Acceptance/commissioning: 1.5-2 days
 - Routine quality assurance
 - Daily: 10-15 minutes
 - Monthly: 1-2 hoursAnnually: 4-8 hours
 - Ongoing (troubleshooting, upgrade, repair): 1-2 hrs/wk
 - Equipment
 - CatPhan, AAPM CT phantom, or equivalent
 - · Ionization chamber
 - Ball-bearing phantom or equivalent

12

Implementation Guidelines Example: kV-CBCT

- Acceptance/commissioning
 - Customer Acceptance Procedures
 - RV/OIS integration
 - Routine QA baselines
- · Routine quality assurance
 - Daily
 - Interlocks, phantom localization/repositioning/shift
 - Monthly
 - Image quality
 - Annually
 - Imaging doseDx-Tx coincidence
- Upgrade/Repair
- Repeat QA baselines upon major upgrade or replacement

Implementation Guidelines Example: kV-CBCT

- · Staff training
 - Medical Physicist
 - Dosimetrist/Therapists
- Common pitfalls
 - X-ray tube performance (kV accuracy, mAs linearity, etc) may be required by individual state regulatory agencies

Conclusions

- IGRT implementation and QA is challenging
- There are QA elements common to all x-ray based **IGRT** systems
 - Safety
 - Image quality
 - Geometric fidelity
 - Scaling
 - Tx-Dx iso
 - Table shifts
- · A successful MPPG1 will improve the quality of clinical support for various IGRT strategies

Thank You	
16	