Implications of a mechanistic tumor control probability model applied to hypofractionated radiotherapy

> Joseph O. Deasy, Areli Zuniga, and Jeho Jeong Memorial Sloan Kettering Cancer Center

But first, can we use a simple model to understand TCP for standard Fx?

How can we estimate TCP for each patient?: using an EUD model to describe TCP

The 'cEUD' model

- EUD = same rate of LC as EUD given uniformly for tumor of vol. = Vref.
- EUD is less sensitive to parameter assumptions than TCP
- Using Niemierko's proposed model (1997)
 Cell-kill based, so we denote the model 'CEUD' vs. gEUD.

The cEUD equation

- Assume tumor • Single parameter
- model (SF2)

 $cEUD = \frac{D_{ref}}{\ln(SF_2)} \ln \left[\frac{1}{V_{ref}} \sum_{i=1}^{blus} V_i SF_2 \left(\frac{D_{ref}}{D_{ref}} \right) \right]$

What does the basic competition between cells for resources imply about the response to radiotherapy? *We need a model.*

Goal: create a model of minimal complexity that captures

- Proliferation
- Hypoxia
- Empirically established concepts of growth fraction, cell loss factor, cell kill, and radioresistance due to hypoxia

Model uses Hypotheses generating: what are we missing? What seems to be implied?

- Integration of concepts
- Future: potential refinement to make actual predictions Possible guide to better understanding data lon standard Fx, SBRT, and FDG-PET vs. outcome.

State-based Simulations of **Tumor Response to** Radiotherapy

Jeho Jeong Advisors: Dr. J. O. Deasy & Dr. S. K. Loyalka

Apr 20th, 2012

A three compartment model to simulate the impact of micro-environmental conditions on radiotherapy response (J.Jeong)

Assumptions

- Assume oxygen and glucose can 'feed' a constant number of cells: i.e. blood supply is constant
- constant Proliferative component (P) of cells with adequate oxygen and glucose (a given % are proliferating) An extremely hypoxic state ('Denekamp hypoxia') where cells have neither adequate oxygen or glucose; cells are dying
- An intermediate compartment (1) where oxygen is low but glucose is adequate for survival.

Assume re-compartmentalization: this leads to reoxygenation

- Assume oxygen and glucose can 'feed' a constant number of cells
- Then re-distribution constantly occurs that assumes P is the preferred state, then I, then H.
- This implies a 'reoxygenation' process

$$\alpha_{X} = \alpha_{P} / OER_{X} \text{ and } \beta_{X} = \beta_{P} / OER_{X}^{2}$$

$$SF_{hp} = \exp(-\frac{\alpha_{eff}}{OER_{eff}}d - \frac{\beta_{eff}}{OER_{eff}^{2}}d^{2}) = \exp(-\frac{\alpha_{ref}}{OER}d - \frac{\beta_{ref}}{OER^{2}}d^{2})$$
Accounting for the OER
(Carlson and Stewart, Med Phys 2006)

How do we find the initial clonogen distributions? The clonogen distribution is (almost) fixed by knowing CLF and GF. The PIH model has nice properties The equations

- A more complicated model would be underspecified by CLF and GF
- A less complicated model cannot include cell loss and GF
- In this sense, the I-state is *implied* by CLF+GF.

Parameter values from the literature were used that also resulted in results consistent with clinical data.

Parameter values from the literature were used that *also* resulted in results consistent with clinical data.

Simulation results shov

'Dog-leg effect' due to reoxygenation Loss of local control of 0.75 Gy/day, similar to clinical data But depends critically on assumed GF (less dependent on CLF) Note that tumor heterogeneity tends to matter least at ~7 wks

State-driven mathematical model simulations of tumor response to radiotherapy: *how does high FDG uptake relate to classical radiobiological principles?*

Modeling stereotactic body radiation therapy (SBRT) including cell cycle-dependent radiosensitivity, hypoxia, reoxygenation and proliferation: are SBRT local control rates explainable based on classical radiobiological factors?

Jeho Jeong^{1,2} and Joseph O. Deasy²

¹University of Missouri, Columbia, MO ²Memorial Sloan-Kettering Cancer Center, New York, NY

SBRT & Radiobiology

€

- Insufficient radiobiological understanding
- Outcome usually analyzed in terms of biologically effective dose (BED)

 Does not consider established radiobiological factors (e.g., hypoxia, reoxygenation, repopulation...)

Objective

- Simulate SBRT tumor response considering classical radiobiological factors
- Using the state-based tumor response model
- Answer the question:

"Is SBRT tumor response explainable based on classical radiobiological factors?"

Inclusion of cell cycle effect into model ($\widehat{\blacksquare}$

• Cell cycle effects: might be considerable at high fractional dose

- Radiosensitivity
 - Cell cycle dependent (G2/M > G1 > S)
 - No cell cycle redistribution within a fractional dose
 Fraction size dependent: reduced for high fractional dose
- Oxygen enhancement ratio (OER)
 - Proliferating cells (*P-comp*): in cell cycle → varying radiosensitivity
 Hypoxic cells (*I-* & *H-comp*): resting phase (G0/G1) → fixed radiosensitivity
 - Fraction size dependent: reduced for high fractional dose
- Cell cycle effect in the model
 - Fraction-size-dependent effective radiosensitivity
 - Fraction-size-dependent effective OER

Model paramete	rs for Lung cancer
Parameter	Value
Growth fraction (GF)	0.25ª
Cell loss factor (CLF)	0.92 ^a
Cell cycle time (T _c)	2 days (Joiner & Kogel, 2009)
Fraction of cells in P compartment (f ^P)	50 % ^b
G1-phase in P (f _{G1})	28 % (Volm et al., 1985)
S-phase in P (f _S)	12 % (Volm et al., 1985)
G2/M-phase (f _{G2M})	10 % (Volm et al., 1985)
Fraction of cells in I compartment (f ¹)	27 % ^b
Fraction of cells in H compartment (f ^H)	23 % ^b
Ratio of alpha of G1- to S-phase (a _{G1} /a _S)	2°
Ratio of alpha of G2/M- to S-phase (α_{G2M}/α_S)	3°
Reference radiosensitivity at 2 Gy/fx (aref)	0.35 Gy ⁻¹ (Mehta et al., 2001)
Alpha-beta ratio (α/β)	3 or 10 Gyc
Reference OER of I compartment at 2 Gy/fx (OER _{ref.})	2º
Reference OER of H compartment at 2 Gy/fx (OER _{net, H}	1.4 (Chan et al., 2008)
 estimated from potential doubling time and volume doul Shibamoto et al., 1998) b estimated from GF and CLF of the model cassumed parameters 	oling time measured for lung cancer (Tinnemans et al., 19

						escalating to 72Gy	doses from 2 (all 3 fraction	24Gy ns)
TABLE 2.	Dose Fraction	nation Re	gimens and	Crude Local	Control In Phase I	& II Studies		
	Patient (#)	Median FU (mo)	Tumor Size (cm)	Prescribed Dose/# Fractions	Prescription	BED _{ine} /EQD ₂ (Gy ₁₀)	BED _{periphery} / EQD ₂ (Gy ₁₀)	Crude Loca Control
McGarry et al 051	47	15.2	≤7	MTD 66 Gy/3	80% isodose at the PTV periphery	309.4/257.8	211.2/176	78.7%
Le et al 0642	Stage I: 20/32	18	≤6.2 Median 3.9	15-30 Gy/1	100% dose at the PTV periphery	64.1-215.6/53.4-179.7	37.5-120/31.25-100	75%
Onimaru et al 0343	Stage I: 25/45	18	≤6	60 Gy/8 48 Gy/8	Isocenter	105/87.5 76.8/64	76.8/64 56.8/47.3	80%
Nagata et al 0544	63	39	n/a	48 Gy/4	Isocenter	105.6/88	n/a	98%
Zimmermann et al 0645	68	17	n/a	37.5 Gy/3 35 Gy/5	60% isodose at the PTV periphery	193.4/161.2 126.8/105.7	84.4/70.3 59.5/49.6	94%
Hoyer et al 0646	40	29	≤6	45 Gy/3	Isocenter	112.5/93.75	60.5/50.4	92.5%
Fakiris et al 0947	70	50.2	≤7	T1: 60 Gy/3 T2: 66 Gy/3	80% isodose at the PTV periphery	262.5/218.8 309.4/257.8	180/150 211.2/176	94.3%
Baumann et al 0948	57	35	≤5 Median 2.5	45 Gy/3	67% isodose line at PTV perinhery	219.4/182.8	112.5/93.75	93%

Reference	Patient setup	PTV margin (cm) (axial/long)	Treatment Duration	RTP system
VicGarry et al. 05	SBF in VP+ DC (≤1cm)	0.5/1.0	once daily with fractions separated by 2-3 days	RenderPlan 3-D planning system (Elekta) Forward-planning intensity modulation for parabolic dose profiles across each beam
Le et al. 06	A vacuum-set moldable Styrofoam	2mm (first 10 pts) → 5mm	single fraction (2-6 hours with CyberKnife)	A radiosurgical treatment plan was generated based on tumor location and geometry
Onimaru et al. 03	None	3 CTs: 0.5/1.0 (add 0.5cm for 1 CT)	2 wks	Focus (Computerized Medical Systems) with considerations made for inhomogeneity in pulmonary density
Nagata et al. 05	SBF + DC	0.5/0.8-1.0	median 12 days (5- 13)	CADPLAN Ver 3.1 & ECLIPSE Ver 7.1(Varian)
Zimmermann et al. 06	vacuum couch and low pressure foil	Individual	5 days (3-10)	Siemens Helax system with pencil beam algorithm
Hoyer et al. 06	Aarhus: SBF + DC Copenhagen(8 pts): custom-made VP	0.5/1.0	5-8 days	Aarhus: Helax, TMS (Nucletron) Copenhagen: CadPlan Plus/Eclipse (Varian)
Fakiris et al. 09	SBF in VP+ DC (≤1cm)	0.5/1.0	once daily with fractions separated by 2-3 days	3D RTP w/o non-homogeneity correction
Baumann et al. 09	SBF + DC (≤0.5cm)	CTV: 0.1-0.2cm PTV: 0.5-1.0/1.0	every second day, median 5 days (4- 15 days)	Helax-TMS (Nucletron) or Eclipse (Varian) Pencil beam algorithms with heterogeneity correction

<i>α/β</i> = 10		EQD ₂ cli	and cell kill nically observ	effect are to ved high loca	o low to ex al control r
SBRT regimen	BED (Gy)	NTD ₂ (Gy)	EQD _{2,model} a (Gy)	F.QD _{2,mudel} / NTD ₂	Estimated SF at the end of RT
26 Gy × 1 fx (single)	93.6	78	46	59 %	1.1×10 ⁻⁶
30 Gy × 1 fx (single)	120	100	58	58 %	8.2×10 ⁻⁷
12 Gy × 3 fx (in 9 days)	79.2	66	48	73 %	4.3×10 ⁻⁶
15 Gy × 3 fx (in 5 days)	112.5	93.75	66	70 %	2.3×10 ⁻⁷
20 Gy × 3 fx (in 8 days)	180	150	108	72 %	1.2×10 ⁻¹⁰
22 Gy × 3 fx (in 8 days)	211.2	176	126	72 %	5.4×10 ⁻¹²
12 Gv × 4 fx (in 12 days)	105.6	88	78	89 %	2.3×10 ⁻⁸

Very low a/ß ratio						
$\alpha/\beta = 3$			_			
SBRT regimen	BED (Gy)	NTD ₂ (Gy)	EQD _{2,model} ª (Gy)	EQD _{2,model} / NTD ₂	Estimated SF at the end of RT	
26 Gy × 1 fx (single)	251.3	150.8	68	45 %	2.1×10 ⁻¹¹	
30 Gy × 1 fx (single)	330	198	88	44 %	2.2×10 ⁻¹⁴	
12 Gy × 3 fx (in 9 days)	180	108	56	52 %	8.0×10 ⁻¹⁰	
15 Gy × 3 fx (in 5 days)	270	162	78	48 %	4.4×10 ⁻¹³	
20 Gy × 3 fx (in 8 days)	460	276	130	47 %	9.3×10 ⁻²¹	
22 Gy × 3 fx (in 8 days)	550	330	154	47 %	3.1×10 ⁻²⁴	
12 Gy × 4 fx (in 12 days)	240	144	82	57 %	1.3×10 ⁻¹³	

Interim Summary

(|

- Included cell cycle effect into the state-based model
 - Based on fraction-size-dependent effective radiosensitivity and effective OERs
 - In single shot Tx, cells in resistant cell-cycle phases may affect outcome more than hypoxic cells
- Model predicted EQD₂ & cell-kill effect (for α/β=10): significantly lower compared to clinical outcome
- Consistent with very low $\alpha/\!\beta$ (<3) & with LQ model validity to 25 Gy.
- Other non-classical effects might exist in SBRT
 - Vascular endothelial cell apoptosis (Garcia-Barros et al., 2003)
 - Immune stimulation after SBRT (Lee et al., 2009)

Questionable assumptions

- LQ holds to high doses, apart from other mechanisms
 - Makes it more likely that cell kill is overestimated
- Differences in LQ parameters over the cell cycle
 - Cells in late-S may have a different high-dose response
 - Late-S survival may be crucial
- Alpha/beta might be low for NSLC

"No matter what the fractionation scheme is, local control is ~90%"

- Likely key issue is hitting all the disease
- Implies over-treatment for many dose fractionation schemes
- Many studies (e.g., Timmerman's IU experience) were pre-image guidance and pre-accurate dosimetry.