

Vanderbilt University

Parham Alaei University of Minnesota

AAPM 2012 Therapy Educational Interactive Session Charlotte, NC, August 2, 2012, 9:00AM - 9:55AM Contact: george.ding@vanderbilt.edu

VANDERBILT UNIVERSITY

Introduction

- Image-guided radiation therapy (IGRT) significantly improves the accuracy of radiotherapy.
- It plays an essential role in the accurate delivery of highly conformal dose to target.
- IGRT is the new paradigm in radiotherapy.
- X-ray imaging procedures for patient setup may add additional radiation dose to patients.

VANDERBILT UNIVERSIT

• Imaging dose may entail risk to patients.

Learning Objectives

- 1. Understand the different available image guidance modalities and devices used in IGRT);
- 2. Understand the magnitude of the organ dose resulting from difference devices and acquisition procedures;
- 3. Understand the variation of patient imaging dose distributions among different imaging procedures;
- 4. Understand how patient dose distributions from an image procedure are calculated;
- 5. Understand why dose-to-bone is much higher than dose-to-soft tissue for kilovoltage x-rays;
- 6. Learn the techniques to reduce the imaging dose to patients and sensitive organs;
- 7. Update on the progress of AAPM TG-180 report.

VANDERBILT UNIVERSITY

Image Guidance Modalities

Commonly used x-ray image devices

- MV electronic portal imaging device (EPID)
 - 2D images: portal images
 - o 3D images: MV-CBCT
 - 3D images: MVCT
- kV x-ray devices integrated to treatment unit
 - 2D images: digital radiographs
 - o 3D images: kV-CBCT

An MVCT image acquired during commissioning Courtesy Edward Chao, Accuray Incorporated and T. Rock Mackie, UW, Madison, WI

VANDERBILT UNIVERSITY

Example: a new kV x-ray source in TrueBeam results reduced dose mainly due to:

- An additional kV beam hardening filter
- Less lower energy photons in the energy spectrum

No.	Summary	_	
Doses from image-guided procedures			
MV imaging:			
– EPID:	4 - 6 cGy from two orthogonal portal images		
– MVCT (TOMO):	1 - 3 cGy		
– MV-CBCT:	1 - 16 cGy		
kV imaging:			
– kV DR:	0.1 - 1.0 cGy		
– kV-CBCT			
• Soft tissue:	0.1 - 3 cGy /acquisition		
• Bone:	0.3 - 6 cGy /acquisition		
	VANDERBILT UNIVERSITY	27	

Summary

Imaging dose comparison from different imaging procedures in descending order:

VANDERBILT UNIVERSITY

MV-CBCT (3D in	imaging)
----------------	----------

- **MV** (EPID) (2D imaging)
- **kV-CBCT** (3D imaging)
- **kV** radiograph (2D imaging)

Future

- Improve imaging technology (on-going progress by manufacturers)
 - reduce imaging doses and improve image quality.
- Use x-ray imaging efficiently:
 - Choose the procedure and the frequency that is most suitable for the purpose
 - Develop protocols for using imaging procedures
 - Pay attention to pediatric patients and reduce imaged region of interest if possible
- Account and document imaging dose for radiotherapy patients
 - Calculate organ doses resulting from image guided procedures / estimate organ doses by using tabulated values resulting from typical imaging procedures
 - Account imaging dose as part of total dose to patients in radiotherapy treatment planning systems

VANDERBILT UNIVERSITY

AAPM TG-180

TG-180 Specific list of charges

- 1. To identify the important issues such as the large variations between dose to bone (or bone marrow) and dose to soft tissues for x-rays at kilovoltage energy range.
- To provide an overview on the general approach to clinical implementation of accounting for the imaging guidance dose from x-ray imaging procedures in radiotherapy include megavoltage electronic portal imaging (MV EPID), kilovoltage digital radiography (kV DR), tomotherapy MVCT, megavoltage cone-beam CT (MV-CBCT) and kilovoltage conebeam CT (kV-CBCT).
- 3. To provide general guidelines for
 - · commissioning an imaging beam in a treatment planning system
 - various verification techniques and experimental methods to assure an accurate imaging beam model commission process
 - specific recommendations on the dose calculation accuracy from an imaging procedure in a treatment planning system.

TG-0180 draft report v.2 is being distributed and discussed in the group .

VANDERBILT UNIVERSITY