Optimizing Dose in the Interventional Suite:

Do you really need that image quality?

Robert G, Dixon, MD University of North Carolina

Financial Disclosure

Educational Consultant for Bard Access Systems

Personal Disclosure

What can I teach a room full of physicists?

Two Perspectives

Physicist

$$CNR^{2}(f) = \frac{C^{2}(f)MTF^{2}(f)}{NPS(f)} = C^{2}(f)SNR^{2}(f)$$

Interventional Radiologist

Two Perspectives

Physicist

Interventional Radiologist

$$CNR^{2}(f) = \frac{C^{2}(f)MTF^{2}(f)}{NPS(f)} = C^{2}(f)SNR^{2}(f)$$

Learning Objectives

- Appreciation of the clinical perspective
 - Need for operator education
- Simple techniques to optimize dose
- Discuss the question: "Do I really need all that image quality?"

Wide Range of Dose

able 3					
Adult Effective Doses for Various Interventional Radiology Procedures					
Examination	Average Effective Dose (mSv)*	Values Reported in Literature (mSv)			
Head and/or neck angiography	5	0.8-19.6			
Coronary angiography (diagnostic)	7	2.0-15.8			
Coronary percutaneous transluminal angioplasty, stent					
placement, or radiofrequency ablation	15	6.9-57			
Thoracic angiography of pulmonary artery or aorta	5	4.1-9.0			
Abdominal angiography or aortography	12	4.0-48.0			
Transjugular intrahepatic portosystemic shunt placement	70	20-180			
Pelvic vein embolization	60	44-78			

^{*} Values can vary markedly on the basis of the skill of the operator and the difficulty of the procedure.

Exam Protocol

Patient Info: Sex:: M ID: Name: ______ 23-Sep-11 10:57:02 Patient Position: HFS LOW DOSE BODY 3 16s 3F/s 23-Sep-11 12:16:29 1 DSA FIXED A 73kV 398mA 50.3ms 0.0CL small 0.1Cu 48cm 2000.0µGym2 68.1mGy 1RAO 1CRA 47F FIXED 13s 3F/s 23-Sep-11 12:30:09 DSA LOW DOSE BODY 3 80kV 362mA 50.3ms 0.1CL small 0.1Cu 42cm 1052.9µGym2 60.6mGy 24RAO 1CRA 40F FIXED LOW DOSE BODY 3 8s 3F/s 23-Sep-11 12:48:06 DSA 78kV 371mA 50.3ms 0.3CL small 0.1Cu 42cm 546.8µGym2 33.5mGy 24RAO 1CRA 23F FIXED LOW DOSE BODY 3 8s 3F/s 23-Sep-11 12:57:50 DSA 844.6µGym2 64.2mGy 24RAO 1CRA 25F 75kV 716mA 49.9ms 0.4CL large 0.1Cu 32cm 10s 3F/s 23-Sep-11 13:12:04 FIXED LOW DOSE BODY 3 DSA 77kV 379mA 50.3ms 0.5CL small 0.1Cu 42cm 790.7µGym2 40.8mGy 21RAO 1CRA 30F DSA FIXED LOW DOSE BODY 3 10s 3F/s 23-Sep-11 13:23:52 78kV 374mA 50.3ms 0.6CL small 0.1Cu 42cm 1004.6uGym2 46.2mGy 21RAO 1CRA 31F FIXED 5s 3F/s 23-Sep-11 13:30:41 LOW DOSE BODY 3 DSA 74kV 390mA 50.2ms 0.6CL small 0.1Cu 42cm 538.9µGym2 21.6mGy 21RAO 1CRA 16F 9 BODY 3 11s 3F/s 23-Sep-11 13:31:58 DSA FIXED LOW DOSE A 77kV 377mA 50.3ms 0.7CL small 0.1Cu 42cm 1141.1µGym2 45.8mGy 21RAO 1CRA 32F

Exam	Protocol

	tient me:	Info:				s	ex:: M	ID:				
10 A	DSA 76kV	384mA	FIXED 50.3ms	S 570700	DOSE	BODY 0.1Cu 42			s 3F/s ² 39.5mGy	23-Sep-1 7 21RAO	1 13:3 1CRA	
	ys: YU		exposure	Exposu	res: 9 6µGym²		uoro:	30.7min		23-Sep-1 2048бµGym 2048бµGym	² 139	9mGy
9.80	890000		N 1465200 NW 1177 TO				307 .1 0			^	1	

What should we teach them?

- Basic, simple techniques
- Target the young physicians

Things you know

- Increase table height
- Add Barriers
- Exit the room for DSA runs
- Limit magnification

Increase the Table Height

Why?

Source to Skin Distance

- SSD: determined by table height the operator's height
- Skin dose decreases as SSD increases
- Therefore, maximize SSD within reason
 700 mm (27.6 inches)
 600 mm (23.6 inches): increase dose 17-29%
 Simple 10 cm (4 inch) maneuver

20% Savings

Vary the technique

- Operator is in control
 - Vary:

Frame Rates

Gantry Position

Protocol Used

Collimation

Optimize

- Prior to the case
- During the case

Prior to the case

Review old studies

CT

MRI

US

- Review prior Interventional Procedures
- Have a clear plan

During the case

- Ask: do I need great quality to...
 - Gain access to the celiac artery
 - Demonstrate IVC Filter Position
 - Insert a port
 - Drain an abscess
 - Perform cerebral angiography
 - Embolize a bleeding visceral artery

Use it if you need it

Use it if you need it

Consider alternatives if you don't

Save Fluoro

- LIH
- Fluoro Video Clips

Last Image Hold

Last Image Hold

Spot Radiograph

Slow the Frame Rate

- Fluoroscopic Frame Rate
- DSA acquisition Frame Rate

Pulsed Fluoroscopy

- 15 30 pps for critical procedures where precision required
- 7.5 pps used for many cases
 Up to 70% dose savings compared with continuous fluoro *
- 3 pulses per second Used when dose savings are paramount or for simple procedures

75 yo male ESRD

Left Arm Fistula

Following Angioplasty

High Dose Procedures

- Embolization
- TIPS
- Renal/Visceral stent placements
- Cardiac RFA
- Coronary angioplasty/stent
- Biliary procedures

TIPS

Protocols

Sets							
BANK TEN			THE PARTY				
W DOSE DSA Body	LOW DOSE BODY 3 3 F/s	LOW DOSE BODY 2 2 F/s	LOW DOSE BODY 1 1 F/s				
	D	FL - Ang 7.5 P/s	FL Angio 3 P/s				
DOMEN	AORTA 3 F/s	RENAL 3 F/s	ILIAC 3 F/s				
	(Da	FL - Ang 7.5 P/s	FL Angio 3 P/s				
DOMEN	CELIAC 3 F/s	SMA 3 F/s	IMA 3 F/s				
JOMEN .	Desi.	FL - Ang 7.5 P/s	FL Angio				

ets							
BANK TEN			THE PARTY				
W DOSE DSA Body	LOW DOSE BODY 3 3 F/s	LOW DOSE BODY 2 2 F/s	LOW DOSE BODY 1 1 F/s				
	D	FL - Ang 7.5 P/s	FL Angio 3 P/s				
DOMEN	AORTA 3 F/s	RENAL 3 F/s	ILIAC 3 F/s				
	(Da	FL - Ang 7.5 P/s	FL Angio 3 P/s				
DOMEN	CELIAC 3 F/s	SMA 3 F/s	IMA 3 F/s				
	Desi.	FL - Ang 7.5 P/s	FL Angio				

Eyes: Protect Them!

Cataracts

Ocular Guidelines

- Previously Deterministic Effect:
 - 2 5 Gy for protracted exposure
- Early Studies
 - Short follow up
 - Lacked sufficient sensitivity
 - Few subjects with dose < few Gy

Worse Case Scenario

- Source above table
- No Barrier Protection
- Dose to the eye 450 900 mSv/yr

Vano Br J Radiol1998 Schueler et al. Radiographics 2006

Eye Protection

Typical workloads: dose to eye may exceed the threshold for cataracts after several years of work if radiation protection tools are not used.

Vano et al. Radiology 2008;248:945-953

Newer Data

- Opacification of the lens at lower doses
- Based on
 - Patients: CT scans, radiation therapy
 - Atomic-bomb survivors
 - Residents of contaminated buildings
 - Chernobyl accident liquidators
 - Radiologic technologists

Newer Data

- Chernobyl workers: < 1 Gy
- Rad Techs: risk increases linearly with no apparent threshold
- These challenge prior recommendations

ICRP

- Lens of the eye: threshold for tissue reaction in absorbed dose is now considered to be 0.5 Gy
- Occupational exposure:
 - Now recommend an equivalent dose limit of 20 mSv/yr (avg over 5 yrs)
 - Previously 150 mSv/yr
 - No single year > 50 mSv

Lens Exposure Cardiology

- Retrospective cumulative lens dose
- Avg: 22 years working/ 51 years old
- 25 mSv 1600 mSv
- New Annual dose limit 20 mSv/yr
 - Exceeded by 60% of cardiologists

Lens Exposure Cardiology

- Several years + no protection may exceed ICRP lifetime dose threshold of 500 mSv
- Risk for developing radiation-induced cataracts

Eye Protection

Operator Eye Protection

Comparing Strategies

- Leaded Glasses:
 reduced by a factor of 5 10
- Scatter Shielding Drapes: reduced by a factor of 5 - 25
- Both Together:
 reduced by a factor of > 25
- Suspended Shielded: Undetectable

CT Suite

15 yo with post-op abscess

CT Abdomen and Pelvis

14-Dec-2011 14:19

Ward: 7CH8

7CH&7 Children'sHospital

Physician: Operator:

Total mAs 1173 Total DLP 198

	Scan	KV	mAs / ref.	CTDIvol	DLP	TI	cSL
Patient Position H-SP							
Topogram	1	120				5.3	0.6
Abd/Pelvis	2	120	65 / 30	4.42	198	0.5	1.2

CT Suite

15-Dec-2011 10:39

7CH&7 Children'sHospital

Ward: Physician: Operator: eg

Total mAs 360 Total DLP 34

	Scan	ΚV	mAs / ref.	CTDIvol	DLP	TI	cSL
Patient Position H-LL Topogram Pre Scan Bx. Mode	1 2 3	80 120 120	17 / 21 17	1.23 4.90	25 9	5.3 0.75 0.5	1.0 1.5 1.5

07-Apr-2011 10:13

Ward: Physician: Operator: PRU&Procedural Recovery Unit

eg

Total mAs 2841 Total DLP 418

	Scan	KV.	mAs / ref.	CTDIvol	DLP	TI	cSL
Patient Position H-SP							
Topogram	1	80				5.3	1.0
Pre Scan	2	120	32 / 30	2.27	33	0.75	1.5
CAREVision	3	120	17	16.32	29	0.36	1.5
Repeat Spiral	4	120	22	1.58	17	0.75	1.5
CAREVision	5	120	17	21.30	38	0.36	1.5
CAREVision	6	120	12	0.89	2	0.36	1.5
Repeat Spiral	7	120	30	2.10	22	0.75	1.5
CAREVision	8	120	12	8.00	14	0.36	1.5
Repeat Spiral	9	120	30	2.10	22	0.75	1.5
CAREVision	10	120	12	7.12	13	0.36	1.5
Repeat Spiral	11	120	30	2.10	22	0.75	1.5
Repeat Spiral	12	120	30	2.10	22	0.75	1.5
Repeat Spiral	13	120	30	2.10	24	0.75	1.5
Repeat Spiral	14	120	30	2.10	24	0.75	1.5
Repeat Spiral	15	120	30	2.10	24	0.75	1.5
CAREVision	16	120	12	7.12	13	0.36	1.5
Repeat Spiral	17	120	30	2.10	24	0.75	1.5

Summary

- Appreciation of the clinical perspective
 - Need for operator education
 - Target the young physicians
- Simple techniques to optimize dose
- Discuss the question: "Do I really need all that image quality?"