Optimizing Dose in the Interventional Suite:
Do you really need that image quality?

Robert G., Dixon, MD
University of North Carolina
Financial Disclosure

Educational Consultant for Bard Access Systems
Personal Disclosure
What can I teach a room full of physicists?

http://theinvisibleagent.wordpress.com/tag/physics/
Two Perspectives

Physicist

Interventional Radiologist

$$CNR^2(f) = \frac{C^2(f)MTF^2(f)}{NPS(f)} = C^2(f)SNR^2(f)$$
Two Perspectives

Physicist

\[\text{CNR}^2(f) = \frac{C^2(f) \text{MTF}^2(f)}{NPS(f)} = C^2(f) \text{SNR}^2(f) \]

Interventional Radiologist
Learning Objectives

• Appreciation of the clinical perspective
 • Need for operator education

• Simple techniques to optimize dose

• Discuss the question: “Do I really need all that image quality?”
Wide Range of Dose

Table 3

<table>
<thead>
<tr>
<th>Examination</th>
<th>Average Effective Dose (mSv)*</th>
<th>Values Reported in Literature (mSv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head and/or neck angiography</td>
<td>5</td>
<td>0.8–19.6</td>
</tr>
<tr>
<td>Coronary angiography (diagnostic)</td>
<td>7</td>
<td>2.0–15.8</td>
</tr>
<tr>
<td>Coronary percutaneous transluminal angioplasty, stent placement, or radiofrequency ablation</td>
<td>15</td>
<td>6.9–57</td>
</tr>
<tr>
<td>Thoracic angiography of pulmonary artery or aorta</td>
<td>5</td>
<td>4.1–9.0</td>
</tr>
<tr>
<td>Abdominal angiography or aortography</td>
<td>12</td>
<td>4.0–48.0</td>
</tr>
<tr>
<td>Transjugular intrahepatic portosystemic shunt placement</td>
<td>70</td>
<td>20–180</td>
</tr>
<tr>
<td>Pelvic vein embolization</td>
<td>60</td>
<td>44–78</td>
</tr>
</tbody>
</table>

* Values can vary markedly on the basis of the skill of the operator and the difficulty of the procedure.

Mettler et al. Radiology 2008
Exam Protocol

Patient Info:

<table>
<thead>
<tr>
<th>Name</th>
<th>Sex</th>
<th>ID</th>
</tr>
</thead>
</table>

| Patient Position: | HFS |

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DSA</td>
<td>FIXED</td>
<td>LOW DOSE</td>
<td>BODY 3</td>
<td>16s</td>
<td>3F/s</td>
<td>23-Sep-11 12:16:29</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>73kV</td>
<td>396mA</td>
<td>50.3ms</td>
<td>0.0CL small</td>
<td>0.1Cu</td>
<td>48cm</td>
<td>2000.0μGy²</td>
</tr>
<tr>
<td>2</td>
<td>DSA</td>
<td>FIXED</td>
<td>LOW DOSE</td>
<td>BODY 3</td>
<td>13s</td>
<td>3F/s</td>
<td>23-Sep-11 12:30:09</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>80kV</td>
<td>362mA</td>
<td>50.3ms</td>
<td>0.1CL small</td>
<td>0.1Cu</td>
<td>42cm</td>
<td>1052.9μGy²</td>
</tr>
<tr>
<td>3</td>
<td>DSA</td>
<td>FIXED</td>
<td>LOW DOSE</td>
<td>BODY 3</td>
<td>8s</td>
<td>3F/s</td>
<td>23-Sep-11 12:46:06</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>78kV</td>
<td>371mA</td>
<td>50.3ms</td>
<td>0.3CL small</td>
<td>0.1Cu</td>
<td>42cm</td>
<td>546.8μGy²</td>
</tr>
<tr>
<td>4</td>
<td>DSA</td>
<td>FIXED</td>
<td>LOW DOSE</td>
<td>BODY 3</td>
<td>8s</td>
<td>3F/s</td>
<td>23-Sep-11 12:57:50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>75kV</td>
<td>716mA</td>
<td>49.9ms</td>
<td>0.4CL large</td>
<td>0.1Cu</td>
<td>32cm</td>
<td>844.6μGy²</td>
</tr>
<tr>
<td>5</td>
<td>DSA</td>
<td>FIXED</td>
<td>LOW DOSE</td>
<td>BODY 3</td>
<td>10s</td>
<td>3F/s</td>
<td>23-Sep-11 13:12:04</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>77kV</td>
<td>379mA</td>
<td>50.3ms</td>
<td>0.5CL small</td>
<td>0.1Cu</td>
<td>42cm</td>
<td>790.7μGy²</td>
</tr>
<tr>
<td>6</td>
<td>DSA</td>
<td>FIXED</td>
<td>LOW DOSE</td>
<td>BODY 3</td>
<td>10s</td>
<td>3F/s</td>
<td>23-Sep-11 13:23:52</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>78kV</td>
<td>374mA</td>
<td>50.3ms</td>
<td>0.6CL small</td>
<td>0.1Cu</td>
<td>42cm</td>
<td>1004.6μGy²</td>
</tr>
<tr>
<td>7</td>
<td>DSA</td>
<td>FIXED</td>
<td>LOW DOSE</td>
<td>BODY 3</td>
<td>5s</td>
<td>3F/s</td>
<td>23-Sep-11 13:30:41</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>74kV</td>
<td>390mA</td>
<td>50.2ms</td>
<td>0.6CL small</td>
<td>0.1Cu</td>
<td>42cm</td>
<td>538.9μGy²</td>
</tr>
<tr>
<td>8</td>
<td>DSA</td>
<td>FIXED</td>
<td>LOW DOSE</td>
<td>BODY 3</td>
<td>11s</td>
<td>3F/s</td>
<td>23-Sep-11 13:31:58</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>77kV</td>
<td>377mA</td>
<td>50.3ms</td>
<td>0.7CL small</td>
<td>0.1Cu</td>
<td>42cm</td>
<td>1141.1μGy²</td>
</tr>
</tbody>
</table>
Exam Protocol

Patient Info:
Name: Sex: M ID:

10 DSA FIXED LOW DOSE BODY 3 9s 3F/s 23-Sep-11 13:36:56
A 76kV 384mA 50.3ms 0.7CL small 0.1Cu 42cm 650.6μGy² 39.5mGy 21RAO 1CRA 26F

Accumulated exposure data
Phys: YU Exposures: 9 Fluoro: 30.7min Total: 20486μGy² 1399mGy
A Fluoro: 30.7min 11916μGy² 978.8mGy Total: 20486μGy² 1399mGy
What should we teach them?

1. Basic, simple techniques
2. Target the young physicians
Things you know

- Increase table height
- Add Barriers
- Exit the room for DSA runs
- Limit magnification
Increase the Table Height

Why?
Source to Skin Distance

- SSD: determined by table height the operator’s height
- Skin dose decreases as SSD increases
- Therefore, maximize SSD within reason
 - 700 mm (27.6 inches)
 - 600 mm (23.6 inches): increase dose 17-29%
 - Simple 10 cm (4 inch) maneuver

Wagner LK, Archer BR Cohen Am.JVIR 2000;11:25-33
20% Savings
Vary the technique

- Operator is in control
 - Vary:
 - Frame Rates
 - Gantry Position
 - Protocol Used
 - Collimation
Optimize

- Prior to the case
- During the case
Prior to the case

- Review old studies
 - CT
 - MRI
 - US
- Review prior Interventional Procedures
- Have a clear plan
During the case

- Ask: do I need great quality to...
 - Gain access to the celiac artery
 - Demonstrate IVC Filter Position
 - Insert a port
 - Drain an abscess
 - Perform cerebral angiography
 - Embolize a bleeding visceral artery
Use it if you need it
Use it if you need it
Consider alternatives if you don’t
Save Fluoro

- LIH
- Fluoro Video Clips
Last Image Hold

Last Image Hold Spot Radiograph
Slow the Frame Rate

- Fluoroscopic Frame Rate
- DSA acquisition Frame Rate
Pulsed Fluoroscopy

15 – 30 pps for critical procedures where precision required

7.5 pps used for many cases
 Up to 70% dose savings compared with continuous fluoro *

3 pulses per second
 Used when dose savings are paramount or for simple procedures

75 yo male ESRD

Left Arm Fistula
Following Angioplasty
High Dose Procedures

- Embolization
- TIPS
- Renal/Visceral stent placements
- Cardiac RFA
- Coronary angioplasty/stent
- Biliary procedures
TIPS
Protocols
<table>
<thead>
<tr>
<th></th>
<th>LOW DOSE BODY 3</th>
<th>LOW DOSE BODY 2</th>
<th>LOW DOSE BODY 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW DOSE DSA Body</td>
<td>3 F/s</td>
<td>2 F/s</td>
<td>1 F/s</td>
</tr>
<tr>
<td></td>
<td>FL - Ang 7.5 P/s</td>
<td></td>
<td>FL Angio 3 P/s</td>
</tr>
<tr>
<td>DOMEN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AORTA</td>
<td>3 F/s</td>
<td>RENAL 3 F/s</td>
<td>ILIAC 3 F/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FL - Ang 7.5 P/s</td>
<td>FL Angio 3 P/s</td>
</tr>
<tr>
<td>DOMEN</td>
<td></td>
<td>SMA 3 F/s</td>
<td>IMA 3 F/s</td>
</tr>
<tr>
<td>CELIAC</td>
<td>3 F/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FL - Ang 7.5 P/s</td>
<td></td>
</tr>
<tr>
<td>DOMEN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LOW DOSE BODY 3</td>
<td>LOW DOSE BODY 2</td>
<td>LOW DOSE BODY 1</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>3 F/s</td>
<td>2 F/s</td>
<td>1 F/s</td>
</tr>
<tr>
<td>FL - Ang</td>
<td>7.5 P/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL Angio</td>
<td></td>
<td>3 P/s</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>AORTA</th>
<th>RENAL</th>
<th>ILIAC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 F/s</td>
<td>3 F/s</td>
<td>3 F/s</td>
</tr>
<tr>
<td>FL - Ang</td>
<td>7.5 P/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL Angio</td>
<td></td>
<td>3 P/s</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>CELIAC</th>
<th>SMA</th>
<th>IMA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 F/s</td>
<td>3 F/s</td>
<td>3 F/s</td>
</tr>
<tr>
<td>FL - Ang</td>
<td>7.5 P/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL Angio</td>
<td></td>
<td>3 P/s</td>
<td></td>
</tr>
</tbody>
</table>
Eyes: Protect Them!
Cataracts
Ocular Guidelines

- Previously - Deterministic Effect:
 - 2 – 5 Gy for protracted exposure

- Early Studies
 - Short follow up
 - Lacked sufficient sensitivity
 - Few subjects with dose < few Gy
Worse Case Scenario

• Source above table
• No Barrier Protection
• Dose to the eye 450 – 900 mSv/yr

Vano Br J Radiol 1998
Schueler et al. Radiographics 2006
Eye Protection

Typical workloads: dose to eye may exceed the threshold for cataracts after several years of work if radiation protection tools are not used.

Vano et al. Radiology 2008;248:945-953
Newer Data

- Opacification of the lens at lower doses
- Based on
 - Patients: CT scans, radiation therapy
 - Atomic-bomb survivors
 - Residents of contaminated buildings
 - Chernobyl accident liquidators
 - Radiologic technologists
Newer Data

- Chernobyl workers: <1 Gy
- Rad Techs: risk increases linearly with no apparent threshold
- These challenge prior recommendations

NCRP 168
Worgul et al; Radiat Res 2007
ICRP

• Lens of the eye: threshold for tissue reaction in absorbed dose is now considered to be 0.5 Gy

• Occupational exposure:
 • Now recommend an equivalent dose limit of 20 mSv/yr (avg over 5 yrs)
 • Previously 150 mSv/yr
 • No single year > 50 mSv

www.ICRP.org – statement on tissue reaction.2011
Lens Exposure Cardiology

- Retrospective cumulative lens dose
- Avg: 22 years working/ 51 years old
- 25 mSv – 1600 mSv
- New Annual dose limit 20 mSv/yr
 - Exceeded by 60% of cardiologists

Jacob et al. Radiat Prot Dosimetry 2012
Lens Exposure Cardiology

- Several years + no protection may exceed ICRP lifetime dose threshold of 500 mSv
- Risk for developing radiation-induced cataracts

Jacob et al. Radiat Prot Dosimetry 2012
Operator Eye Protection
Comparing Strategies

- Leaded Glasses:
 reduced by a factor of 5 - 10

- Scatter Shielding Drapes:
 reduced by a factor of 5 - 25

- Both Together:
 reduced by a factor of >25

- Suspended Shielded:
 Undetectable

Thornton, Dauer et al. JVIR 2010
CT Suite
15 yo with post-op abscess
CT Abdomen and Pelvis

14-Dec-2011 14:19

Ward: 7CH&7 Children's Hospital
Physician:
Operator:

Total mAs 1173 Total DLP 198

<table>
<thead>
<tr>
<th>Scan</th>
<th>KV</th>
<th>mAs / ref.</th>
<th>CTDIvol</th>
<th>DLP</th>
<th>TI</th>
<th>cSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topogram</td>
<td>1</td>
<td>120</td>
<td>65 / 30</td>
<td>4.42</td>
<td>198</td>
<td>0.6</td>
</tr>
<tr>
<td>Abd/Pelvis</td>
<td>2</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td>5.3</td>
</tr>
</tbody>
</table>
15-Dec-2011 10:39

Ward: 7CH&7 Children's Hospital
Physician: eg
Operator:

Total mAs 360 Total DLP 34

<table>
<thead>
<tr>
<th></th>
<th>Scan</th>
<th>kV</th>
<th>mAs / ref.</th>
<th>CTD/100cm</th>
<th>DLP</th>
<th>T1</th>
<th>cSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topogram</td>
<td>1</td>
<td>80</td>
<td></td>
<td>1.23</td>
<td>5.3</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Pre Scan</td>
<td>2</td>
<td>120</td>
<td>17 / 21</td>
<td>1.23</td>
<td>25</td>
<td>0.75</td>
<td>1.5</td>
</tr>
<tr>
<td>Bx. Mode</td>
<td>3</td>
<td>120</td>
<td>17</td>
<td>4.90</td>
<td>9</td>
<td>0.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>
Lung Cancer
Lung Cancer
Lung Cancer
Lung Cancer

Table

<table>
<thead>
<tr>
<th>Procedure</th>
<th>KV</th>
<th>mAs</th>
<th>ref.</th>
<th>CTDvol</th>
<th>DLP</th>
<th>Ti</th>
<th>cSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topogram</td>
<td>80</td>
<td>32</td>
<td>30</td>
<td>2.27</td>
<td>33</td>
<td>0.75</td>
<td>1.0</td>
</tr>
<tr>
<td>Pre Scan</td>
<td>120</td>
<td>17</td>
<td>22</td>
<td>1.58</td>
<td>17</td>
<td>0.75</td>
<td>1.5</td>
</tr>
<tr>
<td>CAREVision</td>
<td>120</td>
<td>17</td>
<td>21.30</td>
<td>38</td>
<td>0.36</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Repeat Spiral</td>
<td>120</td>
<td>12</td>
<td>0.00</td>
<td>2.10</td>
<td>22</td>
<td>0.75</td>
<td>1.5</td>
</tr>
<tr>
<td>Repeat Spiral</td>
<td>120</td>
<td>30</td>
<td>1.10</td>
<td>2.10</td>
<td>22</td>
<td>0.75</td>
<td>1.5</td>
</tr>
<tr>
<td>Repeat Spiral</td>
<td>120</td>
<td>12</td>
<td>3.20</td>
<td>7.12</td>
<td>13</td>
<td>0.36</td>
<td>1.5</td>
</tr>
<tr>
<td>Repeat Spiral</td>
<td>120</td>
<td>30</td>
<td>2.10</td>
<td>24.0</td>
<td>0.75</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Repeat Spiral</td>
<td>120</td>
<td>12</td>
<td>2.10</td>
<td>24.0</td>
<td>0.75</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>CAREVision</td>
<td>120</td>
<td>12</td>
<td>7.12</td>
<td>13</td>
<td>0.36</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Repeat Spiral</td>
<td>120</td>
<td>30</td>
<td>2.10</td>
<td>24.0</td>
<td>0.75</td>
<td>1.5</td>
<td></td>
</tr>
</tbody>
</table>
Summary

• Appreciation of the clinical perspective
 • Need for operator education
 • Target the young physicians

• Simple techniques to optimize dose

• Discuss the question: “Do I really need all that image quality?”