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Dynamic Contrast Enhanced MRA

Challenge

Need high spatial resolution to resolve vessels, but also need a 

high temporal resolution to separate arterial and venous phases.

Increased frame rates can be provided by:

• Parallel Imaging

• Partial Fourier

• Keyhole

• View Sharing

• Non Cartesian Acquisitions

• Compressed Sensing / HYPR

Increased frame rates can be provided by:

• Parallel Imaging
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• View Sharing

• Non Cartesian Acquisitions

• Compressed Sensing / HYPR

Background:  Cartesian

Cartesian Imaging

• Used by nearly all clinical MRI pulse sequences

• Very robust to gradient errors

• Image Reconstruction is Easy

• Parallel Imaging is Easy

• Anisotropic FOV is Easy

Drawbacks

• Sensitive to flow/motion
• Slow 
• Uniform Undersampling -> Coherent Aliasing Artifact
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Non-Cartesian Imaging

• Offers unique benefits for a subset of applications

• Sensitive to Gradient Errors
� Gradient Delays

� Eddy Currents

� Concomitant Gradients

• Image Reconstruction More Difficult

Background:  Non-Cartesian

Figures From:   P. Irarrazabal and D.Nishimura

MRM 1995;  Vol. 33 p.656

Incoherent Aliasing Artifacts

Background:  Non-Cartesian
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Background:  Gridding

1 O’Sullivan et al.  IEEE Trans. Med. Imaging 1985, 4(4):200-207
1 Jackson et al.  IEEE Trans. Med. Imaging 1991, 10(3):473-478

Background:  Gridding

1 O’Sullivan et al.  IEEE Trans. Med. Imaging 1985, 4(4):200-207
1 Jackson et al.  IEEE Trans. Med. Imaging 1991, 10(3):473-478

Gridding Example
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Gridding Example

IFFT

Gridded data
Crop

X

1/FFT(kernel)

Gridding Example

Background:  Gridding/NUFFT Software

Jeff Fessler’s Image Reconstruction Toolbox:

http://www.eecs.umich.edu/~fessler/code/index.html

Matlab-based implementations of NUFFT and much more

NFFT:   http://www-user.tu-chemnitz.de/~potts/nfft/

Implementations of various Non-uniform FFTs in C   (Linux-based)

Jim Pipe has some stuff here:  http://www.ismrm.org/mri_unbound/
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Dynamic CE-MRA

Reduce aliasing artifacts via:

• 3D projection reconstruction acquisition (VIPR1)
� incoherent aliasing artifacts

1 Barger et al.  MRM 48:297-305 (2002)

2560 projections 

3D MIP

• Acquire multiple radial lines in a single shot

• Pre-contrast subtraction

� removes aliasing of the background tissue  

� vessel images are sparse   (< 5% non-zero)

Dynamic CE-MRA:  Methods

Implemented a 2D radial EPI sequence:

3D spherical k-space is progressively filled in by 

pseudo-random rotations of this 2D pattern:

16 shots 64 shots 256 shots

Methods:

Acquisition

• 3T Siemens System with 12-channel head coil

• 3D FLASH, FA= 20 degrees

• TR= 8.68 ms for 1.0 mm isotropic resolution

• TR= 10 ms for 0.8 mm isotropic resolution

• 5 radial lines per shot

• 4096 unique shots repeated 4 times (~2.5 mins)

Rep 1 Rep 2 Rep 3

Contrast 

Injection

Rep 4

Precontrast Baseline
In

Use all data to obtain coil sensitivities and field map
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Methods:

Contrast

Single dose (0.1 mmol/kg) of gadolinium-based contrast  agent.  

Injection rate: 3 mL/s

Reconstruction Approaches:

1.)  CG-SENSE1:  initialize each frame with the previous timeframe

2.)  CG-SENSE with BM4D2 denoising:    

initializes each frame with zeros

1 Pruessmann et al. Mag Reson Med 2001; 46: 638-651
2 Maggioni et al.  IEEE Trans. Image Process. 2012 (In Press)

Lee et al.  Proc. ISMRM 2012,  #2257

3 Noll et al.  IEEE Trans Med Imaging  1991; 10(4):629-637

In both cases: time-segmented reconstruction3 for field map correction

CG-SENSE

MR signal formation can be written as a system of linear 

equations:
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For multi-coil MRI data

K-space data

image

Coil Sensitivies

Encoding Matrix

Use the conjugate gradient algorithm to solve

Field Map Estimation
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Fieldmap Correction

Uncorrected Corrected

Results:  Dynamic CE-MRA:  1 mm 

CG-SENSE:  4 iterations, 1.1 s/frame 

Rotation of a single late arterial phase frame

Results: Dynamic CE-MRA:  1 mm 
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Case 1:  LICA aneurysm

2D x-ray DSA MRA:  volume rendering

Case 2:  AVM

Case 2:  AVM

PA

Localized MIP
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Compressed Sensing

The theory of compressed sensing is a relatively recent 

development:

Early work in applying CS to MRI was performed by : 

M. Lustig et al. Magn. Reson. Med. 2007; 58:1182-1195

Three key components required:

• Transform sparsity

• Incoherent aliasing artifacts in the transform domain

• Nonlinear image reconstruction that promotes sparsity

E. Candes et. al.   IEEE Trans. Information Theory 2006; 52:489-509

D. Donoho.  IEEE Trans. Information Theory 2006; 52:1289-1306

CG-SENSE + Denoising

Adluru et al.  JMRI 2012; 32:1217-1227 proposed a reconstruction 

approach which employed Non-local Means (NLM) denoising to 

remove incoherent aliasing artifacts. 

Lee et. al. Proc. ISMRM 2012 #2257  proposed alternating CG-

SENSE iterations with application of the BM4D1 denoising

algorithm.

1 Maggioni et al.  IEEE Trans. Image Process. 2012 (In Press)

CG-SENSE + Denoising

Fig.1: Coronal MIPs for various reconstructions of a late arterial 

phase frame using 640 projections (1.33 seconds of data).
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CG-SENSE + Denoising

320

Projections

640

Projections

1280

Projections
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Results:  32 channel coil,  0.8 mm 

CG-SENSE + Denoising:  2 sec / frame every 0.5 s

Each frame initialized with zeros

Projection Ordering

Goal:  

sample uniformly, regardless of time scale

e.g.  Short time scale used for individual frames, but 

long time scale used when estimating coil sensitivities 

and field map.

Existing approach:  

When only one projection is acquired per TR, the 3D golden 

angle approach of Chan et al.  (MRM 2009) can be used.

No known algorithm for cases with multiple-projections per TR



8/2/2012

11

Projection Ordering: Multi-projection

Proposed approach:  

Treat the end points of the projections as charged particles on 

the surface of a sphere.   Treat each shot as a rigid body. 
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Projection Ordering:  Multiclass

Set 1 Set 2 Set 1 + Set 2

Initialize with Random Points

Projection Ordering:  Multiclass

Set 1 Set 2 Set 1 + Set 2

Weighted toward subsets
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Projection Ordering:  Multiclass

Set 1 Set 2 Set 1 + Set 2

Weighted toward full set

Projection Ordering:  Multiclass

Set 1 Set 2 Set 1 + Set 2

Intermediate weighting

Projection Ordering:  Multiclass

Set 1 Set 2 Set 1 + Set 2

Multi-projection case has fewer degrees of freedom so uniformity 

is not as good as the case when all charges are allowed to move 

independently
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Projection Ordering: 3D Cartesian Example

First 1/8 of samples Full Set of Samples

Conclusions

Summary

• Time-resolved 3D acquisition at 0.8 – 1 mm isotropic resolution with 

temporal resolution of ~1 s / frame

• Reconstruction at acceleration factors > 100.  

• Iterative reconstruction is computationally intensive

• Field maps and coil sensitivities can be obtained from the same 

dataset
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