

¹ Radiology, Cincinnati Children's Hospital Medical Center Padiology, Case Western Reserve University / University Hospitals Case Medical Center ³ Biomedical Engineering, Case Western Reserve University

버

Cincinnati Children's

CASE WESTERN RESERVE UNIVERSITY IST. 1826 EST. 1826

University Hospitals Case Medical Center

Dynamic Contrast Enhanced MRA

Challenge

high temporal resolution to separate arterial and venous phases.

Increased frame rates can be provided by:

• Parallel Imaging • Partial Fourier

Keyhole
View Sharing

Case Western Reserve

- Non Cartesian Acquisitions
 Compressed Sensing / HYPR

University Hospitals Case Medical Center

Background: Cartesian lash

Cartesian Imaging

- Used by nearly all clinical MRI pulse sequences
- Very robust to gradient errors
- Image Reconstruction is Easy
- Parallel Imaging is Easy
- Anisotropic FOV is Easy

Drawbacks

- Sensitive to flow/motion
 Slow
 Uniform Undersampling -> Coherent Aliasing Artifact

CASE WESTERN RESERVE

University Hospital Case Medical Center

Background: Gridding/NUFFT Software

Jeff Fessler's Image Reconstruction Toolbox: http://www.eecs.umich.edu/~fessler/code/index.html Matlab-based implementations of NUFFT and much more

CASE WESTERN RESERVE

NFFT: http://www-user.tu-chemnitz.de/~potts/nfft/ Implementations of various Non-uniform FFTs in C (Linux-based)

Jim Pipe has some stuff here: http://www.ismrm.org/mri_unbound/

University Hospital Case Medical Center

4

Methods: ₩

Contrast Single dose (0.1 mmol/kg) of gadolinium-based contrast agent. Injection rate: 3 mL/s

Reconstruction Approaches:

- 2.) CG-SENSE with BM4D² denoising: Lee et al. Proc. ISMRM 2012, #2257

In both cases: time-segmented reconstruction³ for field map correction

University Hospit Case Medical Centr

 ¹ Pruessmann et al. Mag Reson Med 2001; 46: 638-651
 ² Maggioni et al. IEEE Trans. Image Process. 2012 (In Press) ³ Noll et al. IEEE Trans Med Imaging 1991; 10(4):629-637

CASE WESTERN RESERVE

Compressed Sensing

The theory of compressed sensing is a relatively recent development: E. Candes et. al. IEEE Trans. Information Theory 2006; 52:489-509 D. Donoho. IEEE Trans. Information Theory 2006; 52:1289-1306

- Early work in applying CS to MRI was performed by : M. Lustig et al. Magn. Reson. Med. 2007; 58:1182-1195
- Three key components required:
- Transform sparsity
- Incoherent aliasing artifacts in the transform domain
- Nonlinear image reconstruction that promotes sparsity

Case Western Reserve

CASE WESTERN RESERVE

₩

lash

CG-SENSE + Denoising

Adluru et al. JMRI 2012; 32:1217-1227 proposed a reconstruction approach which employed Non-local Means (NLM) denoising to remove incoherent aliasing artifacts.

Lee et. al. Proc. ISMRM 2012 #2257 proposed alternating CG-SENSE iterations with application of the BM4D¹ denoising algorithm.

¹ Maggioni et al. IEEE Trans. Image Process. 2012 (In Press)

University Hospitals Case Medical Center

University Ho: Case Medical C

Projection Ordering

Goal:

sample uniformly, regardless of time scale

e.g. Short time scale used for individual frames, but long time scale used when estimating coil sensitivities and field map.

Existing approach:

When only one projection is acquired per TR, the 3D golden angle approach of Chan et al. (MRM 2009) can be used.

No known algorithm for cases with multiple-projections per $\ensuremath{\mathsf{TR}}$

CASE WESTERN RESERVE

University Hospita Case Medical Cente

	Projection Ordering: 3D Cartesian Example				
	First 1/8 of samples	Full Set of Samples			
CASE W	ISTERN RESERVE	University Hospi			

Conclusions

Summary

₩

 $\overline{}$ Time-resolved 3D acquisition at 0.8 – 1 mm isotropic resolution with temporal resolution of ~1 s / frame

- Reconstruction at acceleration factors > 100.
- Iterative reconstruction is computationally intensive

Field maps and coil sensitivities can be obtained from the same dataset

University Hospitals Case Medical Center

Acknowledgements

Collaborators

CASE WESTERN RESERVE

Case Western Reserve University Mark A. Griswold Nicole Seiberlich Jeffrey L. Sunshine

Northwestern University Tim Carroll

Research Support Siemens Healthcare NIH 1R01HL094557 NIH 5R01HL088437-02

CASE WESTERN RESERVE

University Hospitals Case Medical Center