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Background 

•  Stereotactic Body Radiation Therapy 
(SBRT) is increasingly common for 
treatment of several tumor sites.  

 

•  SBRT = single dose or small number of high 
dose fractions. 

 

•  The question arises: 
 How do we model large fraction doses?              
Is the Linear-Quadratic(LQ) model valid? 

Is the Linear-Quadratic(LQ) model valid at 
large doses per fraction? 

 

1.  ASTRO 2008: we don’t know. 
(Educational session, W. McBride, PhD, UCLA) 

2.  Brenner (and others): Yes of course.           
(Seminars of Rad. Oncology, Oct 2008, etc). 

3.  Other authors: no, not really.                       
(several alternative models proposed,) 

4.  Our answer: …coming soon 

Answer: all over the place 
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Alternative models 

•  Over the years many models have been 
proposed 

        (Parks et al (2008), others: e. g. Charlie Ma 2012) 
•  Lethal-Potentially-Lethal (LPL) 

 (Fan Y and Paliwal B AAPM 2003 
   Curtis 1986). 

LQ too good to let go  

•  Decades of success: LQ model gives good description 
of fractionation effects for low doses per fraction (e.g. 2Gy). 

•  Few and established parameters: α/β ratios well 
known for many tissues, repair times also. 

•  Mathematical simplicity 

•  Mechanistic (e.g. Dale 1985, others) 
 

•  Can include 4 Rs. (e. g. Brenner 1995, others) 

What do we know about LQ at high doses? 
 

• LQ model has a continuously bending survival curve at high 
doses versus linear behavior observed at least in some cell 
lines (logarithmic scale). 

•  LQ model matches other more sophisticated models like the 
Lethal-Potentially-Lethal model (LPL) only at low doses and 
dose-rates but not at high doses. (Brenner et al 1998) 

 Our linear-quadratic-linear (LQL) model 
addresses these two issues 

HX118 melanoma cells survival curves 
LQ(dashed) and LPL(solid) model fits (Steel et al 1987) 

LPL=Lethal-Potentially-Lethal model and LQ fits are 
indistinguishable for low doses and dose-rates but 
what about higher doses???? 

Extending the linear–quadratic model for large fraction doses pertinent to stereotactic radiotherapy 4827
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Figure 1. Survival curves of the HX118 human melanoma cell line for three dose rates (data from
Steel et al (1987)). The LPL (solid lines) and LQ model (dashed lines) fit the data well but have
order of magnitude (OM) differences in the predictions at high doses.
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Figure 2. Comparison survival curves of (a) the LPL (symbols) and LQ (solid line) and (b) the
LPL and MLQ with calculated parameters (solid line) for a wide range of dose rates. The MLQ
reproduces the LPL even at high acute doses, where the LQ predicts more cell kill.

ηL = 0.32 Gy−1, ηPL = 0.98 Gy−1, ε = 6.8, T1/2 = 0.16 h for the LPL and α = 0.33 Gy−1,
β = 0.038 Gy−2, T1/2 = 0.23 h for the LQ). It is clear from this figure that both models
describe the data points very well, however when extrapolating to doses of 20, 25 and 30 Gy
for high dose rate (90 Gy h−1), they yield differences of several orders of magnitude (OM) in
the survival fractions of acute exposures.

In figure 2(a) the LPL curves (with the parameters of the HX118 cells, same as figure 1)
are plotted together with the LQ curves for a wide range of dose rates with parameters

Guerrero and X. Allen Li, Phys. Med. Biol. 49, 4825–4835 (2004) 
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Can the LQ model match the LPL at high doses? 
 

•  LQ Survival curve: 
 

   
 

G(µT) is the Lea-Catcheside factor èincreased 
survival due to repair, dose rate effect (µ=repair 
rate, T= treatment time) 
 

G(x) = 2
x2

x −1+ e−x( )0 <G(x)<1

SLQ=exp(-αD-βD2G(µT))  

Can the LQ model match the LPL at high doses? 
 

•  LQL Survival curve: 
                 

•  Acute dose: µT<<1 G=1 for LQ but for LQL  
    G(δD) remains for acute doses: 
 

         SLQL=exp(-αD-βD2G(δD)) 
 

•  Introduces a new parameter δ [Gy-1]. 
 

 SLQL=exp(-αD-βD2G(µT+δD)) 

LQL matches LPL survival for ALL doses and 
dose-rates 

Extending the linear–quadratic model for large fraction doses pertinent to stereotactic radiotherapy 4827
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Figure 1. Survival curves of the HX118 human melanoma cell line for three dose rates (data from
Steel et al (1987)). The LPL (solid lines) and LQ model (dashed lines) fit the data well but have
order of magnitude (OM) differences in the predictions at high doses.

0 10 20 30
Dose(Gy)

1e-10

1e-08

1e-06

1e-04

1e-02

1e+00

Su
rv

iv
al

 fr
ac

tio
n

0.01Gy/h
0.1Gy/h
1Gy/h
10Gy/h
100Gy/h
1000Gy/h

LPL and LQ (calculated parameters)

0 10 20 30
Dose(Gy)

LPL and LQM

(a) (b)

Figure 2. Comparison survival curves of (a) the LPL (symbols) and LQ (solid line) and (b) the
LPL and MLQ with calculated parameters (solid line) for a wide range of dose rates. The MLQ
reproduces the LPL even at high acute doses, where the LQ predicts more cell kill.

ηL = 0.32 Gy−1, ηPL = 0.98 Gy−1, ε = 6.8, T1/2 = 0.16 h for the LPL and α = 0.33 Gy−1,
β = 0.038 Gy−2, T1/2 = 0.23 h for the LQ). It is clear from this figure that both models
describe the data points very well, however when extrapolating to doses of 20, 25 and 30 Gy
for high dose rate (90 Gy h−1), they yield differences of several orders of magnitude (OM) in
the survival fractions of acute exposures.

In figure 2(a) the LPL curves (with the parameters of the HX118 cells, same as figure 1)
are plotted together with the LQ curves for a wide range of dose rates with parameters

LPL(points) and LQ(solid) LPL(points) and LQL(solid) 

The new term G(δD) with δ adjusted to match final 
slope, makes the LQL equivalent to LPL with advantage 
of familiarity and knowledge of parameters α and β. 
Guerrero and X. Allen Li, Phys. Med. Biol. 49, 4825–4835 (2004) 

Compartmental LQL formulation (Carlone et al) 
(based on Dale’s 1985 LQ formulation) 

LS= sub-lethal lesions  LF=fatal lesions R(t)=dose-rate 
p=yield of LS per unit dose ε=probability of interaction 
 

 

 

2pR(t) è LS 
ì  

î  
€ 

dLS
dt

= 2pR − µLS

€ 

−pRεLS

pR(t)εLS  è INTERACTION  

-µLS      è REPAIR   
 
        

í  
αR(t) è LF 

€ 

dLF
dt

= αR + pRεLS

M. Carlone, D. Wilkins, and P. Raaphorst Phys. Med. Biol. 50, L9–L15 (2005) 
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Linear-Quadratic-Linear(LQL) solution 

•  New factor in solution for acute doses 

 S=exp(-αD-βD2G(δD))   δ=pε 
p=yield of LS per unit dose ε=probability of interaction 
 

•  Interpretation of G(δD): reduction in 
survival due to interaction between 
lesions. 

•  For large doses S~exp(-(α+β/2δ)D) (linear 
behavior). 

•  LQL agrees with LPL model at all doses and 
dose-rates . 

•  Recovers LQ at low doses and low dose-
rates.     

•  Mechanistic formulation        

Linear-Quadratic-Linear(LQL) solution 

 

•  For large doses S~exp(-(α+β/2δ)D) 
(linear behavior). 

•  LQL agrees with LPL model at all doses 
and dose-rates   

•  Mechanistic formulation              

 Test the models at high dose?  
Isoeffect equations using BED 

      D= total dose            BED= biologically effective dose 
      d=dose per fraction          =D(1+d/(α/β)) 
      n=number of fractions 

LQ: 
 
 
LQL:   
 
   
Fe-plots: for a certain isoeffect plot 1/D vs d 
               LQ predicts linear behavior 
 

€ 

1
D

=
1

BED
+

1
BED⋅ (α /β)

d

€ 

1
D

=
1

BED
+

1
BED⋅ (α /β)

d⋅ G(δd)

LQ vs LQL Test: Re-analyze isoeffect data 

Barendsen 1982, Red Journal 
 

“Dose fractionation, dose rate and iso-effect 
relationships for normal tissue responses” 

 
Seminal work for LQ model 

cited over 500 times 
 

Fit of isoeffect curves from animal experiments 
with LQ formula 
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Guerrero and X. Allen Li, Phys. Med. Biol. 49, 4825–4835 (2004) 
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13 Isoeffect plots analysis 
LQ vs. LQL fits with χ2/n  value 

Extending the linear–quadratic model for large fraction doses pertinent to stereotactic radiotherapy 4831
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Figure 4. Fe-plots for two different end-points from Barendsen (1982) and references therein.
Solid line: LQ fit. Dashed line: MLQ fit.

Table 3. LQ and MLQ model parameters for the iso-effect experiments.

LQ MLQ

Experiment α/β (Gy) χ2/n α/β (Gy) δ (Gy−1) χ2/n

Bone marrow LD50/30 days∗ 6.1 0.435 2.23 0.39 0.16
Mouse jejunum crypt death∗ 6.9 0.034 3.25 0.09 0.0075
Mouse foot skin desquamation 10.0 0.0047 9.90 <0.04 0.0052
Rat brain LD50/1 year∗ 8.6 0.023 0.89 0.08 0.01
Mouse kidney histopathologic changes 0.73 0.095 – 0.049 0.08
Rabbit post-irradiation nephritis∗ 6.4 0.26 – 0.25 0.082
Rat spinal cord (vascular lesions)∗ 3.0 0.094 0.14 0.13 0.01
Rat spinal cord (radiculopathy) 4.5 0.019 3.86 0.01 0.02
Mouse lung LD50∗ 1.5 0.2 – 0.096 0.13
Mouse spinal cord white matter necrosis∗ 1.2 0.041 0.11 0.045 0.035
Mouse skin contraction 5.1 0.007 4.34 <0.04 0.009
Mouse spinal cord myelopathy 4.9 0.010 5.0 <0.04 0.013
In vitro AG1522 cells in plateau phase∗ 3.6 0.29 1.7 0.23 0.0029

(1984) and de Boer (1988) have proposed better ways to estimate the α/β ratio but these
methods cannot be easily extended for the MLQ.

The negative values of the intercept are not a shortcoming of the MLQ. For example in
figures 4(a) and (b), it is clear that the LQ gives a positive value for the intercept because
it averages out the slope for low doses per fraction with that for higher doses per fraction.
However, it is evident from the figures that using a single slope is a very poor approximation.
For the same reason, the MLQ α/β ratios are in general lower than the LQ α/β ratios. If only
the low dose per fraction points were fitted with the LQ, a smaller or negative intercept would
also be obtained. The α/β ratios obtained by the MLQ are essentially given by the initial
slope of the curves, while the LQ α/β ratios are given by the ‘average’ slope.

In the cases of mouse foot skin desquamation, mouse kidney histopathologic changes,
radiculopathy of the mouse spinal cord, mouse skin contraction and myelopathy of the mouse
spinal cord, the MLQ and the LQ give essentially the same fit (the value of χ2/n is slightly
larger for the MLQ due to the larger number of parameters). In such cases the MLQ yields a

LQ LQL 

Guerrero and X. Allen Li, Phys. Med. Biol. 49, 4825–4835 (2004) 

Isoeffects summary  

•  Of 13 isoeffects curves studied, the LQL 
significantly improved the quality of the 
curve fit in 8 of them. 

•  Values of δ ranged from 0.04 to 0.4 Gy-1 
 

•  Dose values were the LQ loses accuracy 
~ δ-1= 2.5Gy to 22Gy or larger. 

Is the Linear-Quadratic(LQ) model valid at 
large doses per fraction? 

 

•  Our answer:  
                    Only sometimes: depending 
on the end point, tissue type and the 
dose level the LQ model may or may not 
be sufficient. 

Answer: all over the place 

δ can be estimated from  known parameters 
α, β and the final slope D0 

Extending the linear–quadratic model for large fraction doses pertinent to stereotactic radiotherapy 4829

Table 1. Summary of LQ and MLQ model parameters for seven tumour cell lines from Steel et al
(1987).

LPL MLQ

Cell line ηL (Gy−1) ηPL (Gy−1) ε T1/2 (h) α (Gy−1) β (Gy−2) δ (Gy−1) D∗ (Gy)

HX34 0.27 1.81 27 0.11 0.27 0.061 0.11 9.91
HX118 0.32 0.98 6.8 0.16 0.32 0.070 0.22 4.6
HX58 0.45 3.12 88 0.82 0.45 0.055 0.050 18.8
HX156 0.30 2.82 156 0.54 0.30 0.026 0.027 37.7
RT112 0.10 1.65 40 0.86 0.10 0.034 0.062 16.16
GCT127 0.45 2.04 46 0.31 0.45 0.045 0.067 15.03
HX142 0.11 1.74 1.54 0.54 0.11 0.98 1.69 0.6

For example, in the case of HX118 cells, δ = 0.22 Gy−1. In this way, the four parameters
of the LPL ( ηL, ηPL, ε and λ) can be mapped to the four parameters of the MLQ (α,β, δ

and λ) and vice versa. The survival curves of the MLQ are plotted together with the LPL in
figure 2(b) for a wide range of dose rates. It is clear that the MLQ curves agree well with the
LPL data for all dose rates even at the highest doses considered, while it maintains the good
description for low doses and dose rates similar to the standard LQ. Even though the MLQ
has the same number of parameters as the LPL, it is a simpler model that does not involve
differential equations and it is a simple extension of the LQ with the G factor.

Table 1 lists the LPL parameters from Steel et al (1987) as well as the calculated MLQ
parameters for seven tumour cell lines (the repair half-time is the same for both models).
Except for the case of HX142 cell line, which is unusual in its large value of β, all cell lines
have δ values between 0.027 and 0.22 Gy−1. (To recover the LQ model one needs δ = 0).

3.2. MLQ parameter δ calculated from D0,α and β

The value of δ can also be calculated from α and β and the final slope of the survival curve
D0 with the formula

δ = 2βD0

1 − αD0
. (3)

Table 2 reports values of δ calculated using equation (3) for seven cell lines compiled by
Barendsen (1982) and for the average values of α,β, and D0 for different histology. In this
way, the new parameter of the MLQ can be related to well-known parameters. The values of
δ obtained are pretty similar and consistent with the values from table 1 for most cell lines
except for the oat cell carcinoma lines.

3.3. MLQ parameter δ fitted from iso-effect data

Re-analysed iso-effect data from Barendsen (1982) and Bedford and Cornforth (1987) are
presented in figures 3–6. The fitted parameters are listed in table 3. Only the cases that
are better described with the MLQ are plotted (and marked with an ∗ symbol in table 3). In
figure 3, Fe-plots for bone marrow LD50/30 days, reduction of crypt stem cells in mouse
jejunum and death of rat as a result of brain irradiation are presented. In figure 4 data for
post-irradiation nephritis in rabbits and rat spinal cord vascular damage are presented. In
figure 5 the tolerance dose for mice lung irradiation and rat spinal cord white matter necrosis
are plotted. In figure 6 in vitro AG1522 cells iso-effect plots are presented. In all these data
sets there is a systematic trend of the curves to bend downwards. The MLQ gives a better

4830 M Guerrero and X A Li
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Figure 3. Fe-plots for three different end-points from Barendsen (1982) and references therein.
Solid line: LQ fit. Dashed line: MLQ fit.

Table 2. δ values obtained from α, β and D0 (Barendsen 1982, Malaise et al 1986).

Cell line α (Gy−1) β (Gy−2) D0 (Gy) δ (Gy−1) D∗ (Gy)

T-1 0.18 0.050 1.1 0.137 7.3
R-1 0.18 0.037 1.3 0.126 7.9
RUC-1 0.12 0.023 1.5 0.084 11.9
RUC-2 0.08 0.010 2.2 0.053 18.7
ROS-1 0.18 0.036 1.6 0.162 6.2
RMS-1 0.22 0.054 1.1 0.157 6.4
MLS-1 0.36 0.025 1.2 0.106 9.4

Gioblastomas (5) 0.241 0.029 1.44 0.128 7.8
Melanomas (19) 0.255 0.053 1.04 0.150 6.7
Squamous cell carcinomas (6) 0.273 0.045 1.28 0.177 5.6
Adenocarcinomas (6) 0.311 0.055 1.04 0.169 5.9
Lymphomas (7) 0.451 0.051 1.48 0.452 2.2
Oat cell carcinomas (6) 0.650 0.081 1.51 13.2 0.076

description of all these experiments, in some cases overwhelmingly: for mouse intestine in
figure 3, the per cent root-mean-square error (RMS) goes from 4% for the LQ model to 0.3%
for the MLQ; for the rat spinal cord vascular lesions in figure 4(b), the RMS is 14% for the
LQ versus 6% for the MLQ; in figure 6, the in vitro AG1522 cells have a RMS of 5% for the
LQ versus 0.5% for the MLQ.

In some cases, (e.g. figures 4(a) and 5) the MLQ gives a negative value for the intercept
and it was therefore fitted by forcing the parameters to be positive. In these cases a very
low value of the intercept is obtained, which provides a poor estimate of the α/β ratio and
we therefore do not list it in table 3. In general, Fe-plots do not provide good estimates of
the parameters, but they are simple and useful to compare the LQ and LQM models. Tucker

Barendsen 1982, Malaise et al 1986  
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δ can be estimated from  known parameters 
Extending the linear–quadratic model for large fraction doses pertinent to stereotactic radiotherapy 4829

Table 1. Summary of LQ and MLQ model parameters for seven tumour cell lines from Steel et al
(1987).

LPL MLQ

Cell line ηL (Gy−1) ηPL (Gy−1) ε T1/2 (h) α (Gy−1) β (Gy−2) δ (Gy−1) D∗ (Gy)

HX34 0.27 1.81 27 0.11 0.27 0.061 0.11 9.91
HX118 0.32 0.98 6.8 0.16 0.32 0.070 0.22 4.6
HX58 0.45 3.12 88 0.82 0.45 0.055 0.050 18.8
HX156 0.30 2.82 156 0.54 0.30 0.026 0.027 37.7
RT112 0.10 1.65 40 0.86 0.10 0.034 0.062 16.16
GCT127 0.45 2.04 46 0.31 0.45 0.045 0.067 15.03
HX142 0.11 1.74 1.54 0.54 0.11 0.98 1.69 0.6

For example, in the case of HX118 cells, δ = 0.22 Gy−1. In this way, the four parameters
of the LPL ( ηL, ηPL, ε and λ) can be mapped to the four parameters of the MLQ (α,β, δ

and λ) and vice versa. The survival curves of the MLQ are plotted together with the LPL in
figure 2(b) for a wide range of dose rates. It is clear that the MLQ curves agree well with the
LPL data for all dose rates even at the highest doses considered, while it maintains the good
description for low doses and dose rates similar to the standard LQ. Even though the MLQ
has the same number of parameters as the LPL, it is a simpler model that does not involve
differential equations and it is a simple extension of the LQ with the G factor.

Table 1 lists the LPL parameters from Steel et al (1987) as well as the calculated MLQ
parameters for seven tumour cell lines (the repair half-time is the same for both models).
Except for the case of HX142 cell line, which is unusual in its large value of β, all cell lines
have δ values between 0.027 and 0.22 Gy−1. (To recover the LQ model one needs δ = 0).

3.2. MLQ parameter δ calculated from D0,α and β

The value of δ can also be calculated from α and β and the final slope of the survival curve
D0 with the formula

δ = 2βD0

1 − αD0
. (3)

Table 2 reports values of δ calculated using equation (3) for seven cell lines compiled by
Barendsen (1982) and for the average values of α,β, and D0 for different histology. In this
way, the new parameter of the MLQ can be related to well-known parameters. The values of
δ obtained are pretty similar and consistent with the values from table 1 for most cell lines
except for the oat cell carcinoma lines.

3.3. MLQ parameter δ fitted from iso-effect data

Re-analysed iso-effect data from Barendsen (1982) and Bedford and Cornforth (1987) are
presented in figures 3–6. The fitted parameters are listed in table 3. Only the cases that
are better described with the MLQ are plotted (and marked with an ∗ symbol in table 3). In
figure 3, Fe-plots for bone marrow LD50/30 days, reduction of crypt stem cells in mouse
jejunum and death of rat as a result of brain irradiation are presented. In figure 4 data for
post-irradiation nephritis in rabbits and rat spinal cord vascular damage are presented. In
figure 5 the tolerance dose for mice lung irradiation and rat spinal cord white matter necrosis
are plotted. In figure 6 in vitro AG1522 cells iso-effect plots are presented. In all these data
sets there is a systematic trend of the curves to bend downwards. The MLQ gives a better

LPL LQL 

Average value for δ≈0.1Gy-1 

Clinical application: SBRT fractionation 
Interplay of parameters 

LQL Survival Curve: reduction in survival more 
pronounced for smaller α/β ratio 

Prostate and lung SBRT and Hypofractionation  

Prostate hypofractionation (review by Ritter 
et al) 

 -Moderate fractionation (d=2-4.3Gy) 
 -Extreme hypofractionation(d=6.7-10.5Gy)  
 -α/β=1.5, 3Gy or 10Gy. 

Lung SBRT (review by Silva et al) 
-α/β=10Gy for lung 
-α/β=3Gy for normal tissue  
  

 Important quantities 

Biologically effective dose (BED) for fractionated treatments: 
d=dose per fraction D=total Dose 
 
 
 
 
 
Equivalent dose in 2 Gy fractions EQD2 
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Prostate Cancer Equivalent Dose at 2Gy/fr 
Extreme hypofractionation 

α/β=1.5Gy δ=0.1Gy-1 

Lung cancer BED 

δ=0.1Gy-1 

Mechanistic formulation allows other dose-rates  
Ex: Split dose- recovery ratio RR 

•  Two fractions of size d separated by an 
interval of time T. 

•  Experiments look at recovery ratio 
RR=S(T)/S(T=0) as T goes to infinity. 

 

        è 

•  LQL predicts reduced recovery ratio. 

€ 

RRLQ = e2βd
2

€ 

RRLQL = e2βF (δd )d
2

€ 

F(x) =
(1− e−x )2

x 2

+ 

δ=0.03
Gy-1 

δ=0.22
Gy-1 

Guerrero and Carlone, Med. Phys. 37, 4173-81 (2010) 
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Recovery Ratio of HF19 cells in plateau phase 
Alsbeih et al   
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The LQL gives a better fit of the recovery ratio as a 
function of dose per fraction 

Guerrero and Carlone, Med. Phys. 37, 4173-81 (2010) 

LQL split dose prediction 

If survival for a single fraction deviates from 
LQ model and follows LQL, then a similar 
deviation is seen in the RR for split dose 
experiments and the size of the deviations 
are related. 

Limitations of LQL 

•  LQL assumes that damage is based on cell survival  
    but other mechanisms (e.g. vascular damage) may be 
    at play at large doses per fraction 
 
 
 
•   The LQL only presents part of the story and does not  
     address other potential differences between standard 
     fractionation and SBRT (e.g 4R’s).   

Final thoughts 

•   The LQL model is an extension of the LQ model with one 
additional parameter that comes into play at high doses. 
 

•  LQL model matches  the LPL for large doses. 
 

•  LQL is mechanistic and can make predictions for 
arbitrary dose-rates. 

 

•  LQL gives better fit than LQ model for many in-vivo 
isoeffect experiments and recovers the LQ model at low 
doses. 

 

•  LQL can be used to estimate BED for clinical SBRT 
schedules (δ has been characterized for different types 
of tissues) 
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