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The state of art in EBRT image-guidance

Add-on, real-time, volumetric, soft-tissue guidance 
during radiation beam delivery is unmet challenge
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Ultrasound soft-tissue imaging
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The tough questions

� How to reliably acquire US images during beam 

delivery?

� How to accommodate telerobotic imaging in  

treatment designs?

� Is robust ultrasound monitoring/tracking of actual 

human anatomy feasible?
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Telerobotic system to enable remote probe control

Telerobotic imaging

Remote Haptic Interface Robot

Schlosser J, Salisbury K, Hristov D, Telerobotic system concept for real-time soft-tissue imaging during 
radiotherapy beam delivery, Med Phys. 2010 Dec;37(12):6357-67.

Robot interference with the LINAC?

(a) (b)

(c) (d)

Compact design to avoids gantry collisions.

Schlosser J, Salisbury K, Hristov D, Med Phys. 2010 Dec;37(12):6357-67.
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Telerobotic Imaging for multiple sites
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Large portion 
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From 2D to 4D: 2nd generation robot

The tough questions

� How to reliably acquire US images during beam 

delivery?

� How to accommodate telerobotic imaging in  

treatment designs?

� Is robust ultrasound monitoring/tracking of actual 

human anatomy feasible?

Treatment Plan Impact

Plans are nearly identical. Potential margin 
reduction from real-time guidance is beneficial.

Clinical prostate IMRT plan
Re-optimized IMRT plan with restricted beam angles to avoid US

probe and robot links
Re-optimized plan with 2mm margin reduction as potentially

enabled by real-time image guidance
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Treatment impact: evaluation tool

Simulation environment incorporating exact 
Linac, patient, robot 3D models

The tough questions

� How to reliably acquire US images during beam 

delivery?

� How to accommodate telerobotic imaging in  

treatment designs?

� Is robust ultrasound monitoring/tracking of actual 

human anatomy feasible?

Online Internal Displacement Monitoring

Tissue Displacement Parameters (TDP):
d - in-plane displacement
R - max correlation value

Trigger signal is activated if a TDP exceeds threshold.
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J Schlosser, K Salisbury, D Hristov, 
Online Image-based Monitoring of Soft-tissue Displacements for Radiation Therapy of the Prostate, IJROBP, 3(5), 08/2012
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Motion Detection: Experimental Evaluations

� Trans-abdominal robotic prostate imaging in 5 
volunteers for ~ 12 minutes at different probe 
pressure levels

• Determine TDP inter- and intra- subject  
variability over 20 second periods 

• Establish TDP thresholds for acceptable false 
positive rates across all subjects

J Schlosser, K Salisbury, D Hristov, 
Online Image-based Monitoring of Soft-tissue Displacements for Radiation Therapy of the Prostate, IJROBP, 3(5), 08/2012 

Selection of TDP threshold values

d=1.4 mm R=0.963

~1 False Positive per 7 min

Motion Detection: Experimental Evaluations

� Simulate prostate displacements by manually 
moving the tracked probe  with respect to prostate

• Evaluate detected displacements at the TDP 
thresholds

• Determine range of detected displacements at 
TDP thresholds
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TDP sensitivity to in-vivo displacements

TDP sensitivity to in-vivo displacements

For TDP thresholds of d=1.4 mm and R=0.963, 
and with 95% confidence, in vivo prostate 

translations were detected before exceeding 
2.3, 2.5, and 2.8 mm in the AP, SI, and ML 
directions.

J Schlosser, K Salisbury, D Hristov, 
Online Image-based Monitoring of Soft-tissue Displacements for Radiation Therapy of the Prostate, IJROBP, 3(5), 08/2012

Demonstration of on-line monitoring
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From 2D to 4D: pick your 3

field-of-view (FOV)

temporal sampling

spatial resolution

High-resolution real-time imaging with adequate FOV is possible!

26

Managing motion in dynamic targets
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Beam Off

Experimental Method
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Motion of ground truth target predicted using 
nearby US feature and external IR marker
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Example

External marker error increases with time.

Internal US signal error remains low.
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Liver Feature Monitoring

Conclusions

� Online telerobotic ultrasound imaging over a 
timescale representative of therapy sessions is 
possible.

� Online motion detection before displacements 
exceed 3 mm is possible. Bi-plane imaging is 
expected to further improve performance and 
robustness.

� Continuous streaming of 4D data opens possibility 
for true 4D motion management. 
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Conclusions

� Simulation tools are expected to enable 
comprehensive studies on treatment planning 
strategies to account for the manipulator.

� Evaluation of long term effects of radiation on the 
transducer performance is required.

� Cross-validation against other modalities 
(radiographic imaging of fiducial markers) is 
ultimately necessary. 

Questions ?


