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The state of art in EBRT image-guidance

Add-on, real-time, volumetric, soft-tissue guidance
during radiation beam delivery is unmet challenge




Ultrasound soft-tissue imaging
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The tough questions

“ How to reliably acquire US images during beam
delivery?

“ How to accommodate telerobotic imaging in
treatment designs?

< Is robust ultrasound monitoring/tracking of actual
human anatomy feasible?




Novel image guidance solution

Linear Accelerator

Accelerator
control console

Optical
tracker

Haptic
Interface

—
US-guidance workstation
computer

L4
3D US imagestream __ (US imaging
system

=P Telerobotic system to enable remote probe control

Probe position data (6 DOF)
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Schlosser J, Salisbury K, Hristov D, Telerobotic system concept for real-time soft-tissue imaging during
radiotherapy beam delivery. Med Phys. 2010 Dec:37(12):6357-67.

Robot interference with the LINAC?

Compact design to avoids gantry collisions.
Schlosser J, Salisbury K, Hristov D, Med Phys. 2010 Dec;37(12):6357-67.




Teler ¢ Imaging for multiple sites
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From 2D to 4
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The tough questions

®:

< How to reliably acquire US images during beam
delivery?

“ How to accommodate telerobotic imaging in
treatment designs?

< Is robust ultrasound monitoring/tracking of actual
human anatomy feasible?

Treatment Plan Impact

Ratio of Total Structure Volume [%]

@ Clinical prostate IMRT plan

A Re-optimized IMRT plan with restricted beam angles to avoid US
probe and robot links

M Re-optimized plan with 2mm margin reduction as potentially
enabled by real-time image guidance

Plans are nearly identical. Potential margin
reduction from real-time guidance is beneficial.




Treatment impact: evaluation tool

Simulation environment incorporating exact
Linac, patient, robot 3D models

The tough questions
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< How to reliably acquire US images during beam
delivery?

“ How to accommodate telerobotic imaging in
treatment designs?

< Is robust ultrasound monitoring/tracking of actual
human anatomy feasible?

Online Internal Displacement Monitoring
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Online Image-based Monitoring of Soft-tissue Displacements for Radiation Therapy of the Prostate, IJROBP, 3(5), 08/2012
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Tissue Displacement Parameters (TDP):
d - in-plane displacement
R - max correlation value

Trigger signal is activated if a TDP exceeds threshold.

J Schlosser, K Salisbury, D Hristov,




Motion Detection: Experimental Evaluations
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% Trans-abdominal robotic prostate imaging in 5
volunteers for ~ 12 minutes at different probe
pressure levels

» Determine TDP inter- and intra- subject
variability over 20 second periods

« Establish TDP thresholds for acceptable false
positive rates across all subjects

J Schlosser, K Salisbury, D Hristov,
Online Image-based Monitoring of Soft-tissue Displacements for Radiation Therapy of the Prostate, IJROBP, 3(5), 08/2012

Selection of TDP threshold values
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Motion Detection: Experimental Evaluations
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% Simulate prostate displacements by manually
moving the tracked probe with respect to prostate

» Evaluate detected displacements at the TDP
thresholds

« Determine range of detected displacements at
TDP thresholds




TDP sensitivity to in-vivo displacements
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TDP sensitivity to in-vivo displacements
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For TDP thresholds of d=1.4 mm and R=0.963,
and with 95% confidence, in vivo prostate
translations were detected before exceeding

2.3, 2.5, and 2.8 mm in the AP, SI, and ML
directions.

J Schiosser, K Salisbury, D Hristov,
Online Image-based Monitoring of Soft-tissue Displacements for Radiation Therapy of the Prostate, [JROBP, 3|
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Demonstration of on-line monitoring
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From 2D to 4D: pick your 3

field-of-view (FOV)
temporal sampling
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High-resolution real-time imaging with adequate FOV is possible!

Managing motion in dynamic targets
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Experimental Method

Ground
truth target
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Motion of ground truth target predicted using
nearby US feature and external IR marker
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= >External marker error increases with time.
—>Internal US signal error remains low.
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Liver Feature Monitoring

Conclusions
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< Online telerobotic ultrasound imaging over a

timescale representative of therapy sessions is
possible.

<+ Online motion detection before displacements
exceed 3 mm is possible. Bi-plane imaging is

expected to further improve performance and
robustness.

< Continuous streaming of 4D data opens possibility
for true 4D motion management.
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Conclusions

< Simulation tools are expected to enable
comprehensive studies on treatment planning
strategies to account for the manipulator.

<+ Evaluation of long term effects of radiation on the
transducer performance is required.

< Cross-validation against other modalities
(radiographic imaging of fiducial markers) is
ultimately necessary.

Questions ?
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RTRAIT IN THE FLESH
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