### Contrast is higher in CT than x-ray projections, because: - 1. CT uses a higher dose. - 2. CT uses contrast agents. - 3. CT uses lower-energy x-rays. - 4. CT has lower noise. - 5. Because: $\overline{\mu}_1 - \overline{\mu}_2 > \int \mu(x, y, z) dy \Big|_{x_1} - \int \mu(x, y, z) dy \Big|_{x_2}$ ### **Imaging Performance** ### Accuracy (Quantitation) Extent to which the measured value equals the 'true' value Vital to longitudinal imaging, Q!: Monitoring (SUV $\rightarrow$ remission) Diagnosis (BMD $\rightarrow$ osteoporosis) Tx planning ( $\mu \rightarrow$ dose calculation) Precision (i.e., "Resolution") Min interval in {DIM} for which two stimuli can be distinguished t ### **Spatial Resolution** # → lp/mm... PSF, LSF, ESF... MTF (≠ pixel size!) Contrast Resolution → contrast... noise... CNR (SDNR) (≠ a display parameter) **Temporal Resolution** $\rightarrow$ speed... temporal MTF ( $\neq$ fps) ### cuiusmodi "Resolution" ### **Spatial Resolution** RT[PSF(x,y)] $MTF(f_r) = FT - LSF(x)$ $\frac{\partial}{\partial x} [ESF(x)]$ ### **Contrast Resolution** $SDNR = 2\frac{\overline{\mu_1} - \overline{\mu_2}}{\left(\sigma_1 + \sigma_2\right)}$ Which of the following imaging modalities has the highest temporal resolution? 0% 1. Ultrasound 0% 2. MV portal imaging 0% 3. MDCT 0% 4. MRI 0% 5. PET Which of the following imaging modalities has the highest temporal resolution? - 1. Ultrasound - 2. MV portal imaging - 3. MDCT - 4. MRI - 5. PET <u>Reference:</u> The Essential Physics of Medical Imaging, Jerrold T. Bushberg et al. (Lippincott & Williams, 2002). Which of the following modalities is used exclusively "offline" (outside the treatment room and on a timescale much greater than the fractionation schedule)? - **0%** 1. MDCT - **0**% 2. MRI - **0%** 3. Nuclear Medicine - **0%** 4. All of the above - **0**% 5. None of the above. 10 Which of the following modalities is used exclusively "offline" (outside the treatment room and on a timescale much greater than the fractionation schedule)? - 1. MDCT - 2. MRI - 3. Nuclear Medicine - 4. All of the above | Which of the following describes the | | |----------------------------------------------------------------|--| | performance of an imaging system to | | | discriminate soft tissues? | | | <b>0%</b> 1. Spatial resolution | | | <b>0%</b> 2. Integral dose | | | <b>0</b> % 3. Field of view | | | <b>0%</b> 4. Contrast resolution | | | <b>0%</b> 5. Temporal resolution | | | | | | 10 | | | | | | | | | | | | | | | | | | Wh : 1 6.1 6.11 : 1 :1 :1 | | | Which of the following describes the | | | performance of an imaging system to discriminate soft tissues? | | | | | | 1. Spatial resolution | | | 2. Integral dose | | | 3. Field of view | | | 4. Contrast resolution | | | 5. Temporal resolution | | | Reference: The Essential Physics of Medical Imaging, | | | Jerrold T. Bushberg et al. (Lippincott & Williams, 2002). | | | Pop-Quiz #1 QuestionTextHere | | |-------------------------------------------------------------------------------------------------------------------|--| | Queouvii emitete | | | | | | <b>0%</b> 1. asdf | | | <b>0%</b> 2. asdf | | | 0% 3. asdf | | | <b>0%</b> 4. asfd <b>0%</b> 5. asdf | | | 5. asui | | | 10 | | | | | | | | | | | | Pop-Quiz #1 | | | QuestionTextHere | | | | | | | | | 1. asdf | | | 2. asdf | | | <ul><li>3. asdf</li><li>4. asfd</li></ul> | | | 5. asdf | | | | | | <u>Reference:</u> Image-Guided Radiation Therapy<br>Edited by D. J. Bourland (Taylor and Francis, New York, 2011) | | | | | | | | | | | | Pop-Quiz #2 | | | QuestionTextHere | | | | | | 00/ 1 10 | | | <ul><li>0% 1. asdf</li><li>0% 2. asdf</li></ul> | | | <b>0%</b> 3. asdf | | | <b>0%</b> 4. asfd | | | <b>0</b> % 5. asdf | | | 10 | | | Pop-Quiz #2 | | |-------------------------------------------------------------------------------------------------------------------|---| | QuestionTextHere | | | | | | | | | 1. asdf | | | 2. asdf | | | <ul><li>3. asdf</li><li>4. asfd</li></ul> | | | 5. asdf | - | | J. usui | | | <u>Reference:</u> Image-Guided Radiation Therapy<br>Edited by D. J. Bourland (Taylor and Francis, New York, 2011) | | | | | | | | | | | | P. C. 112 | | | Pop-Quiz #3 QuestionTextHere | | | Question rextitete | | | | | | <b>0%</b> 1. asdf | | | <b>0%</b> 2. asdf | | | <b>0%</b> 3. asdf | | | <b>0%</b> 4. asfd | | | <b>0%</b> 5. asdf | | | | | | 10 | | | | | | | | | | | | Pop-Quiz #3 | | | QuestionTextHere | | | | | | | | | 1. asdf | | | 2. asdf | | | 3. asdf | | | 4. asfd | | | 5. asdf | | | <u>Reference:</u> Image-Guided Radiation Therapy<br>Edited by D. J. Bourland (Taylor and Francis, New York, 2011) | | ## The main image quality advantage of CT over radiography is: - 1. Spatial resolution - 2. Contrast resolution - 3. Temporal resolution - 4. Speed - 5. Reimbursement ## The main image quality advantage of CT over radiography is: - 1. Spatial resolution - 2. Contrast resolution - 3. Temporal resolution - 4. Speed Reference: The Essential Physics of Medical Imaging Bushberg et al. # Dr. Tork complains that he cannot see the trabecular bone details in a CT image. A reasonable course of action is to: - **0%** 1. Acquire a radiograph. - **0%** 2. Administer contrast agent. - **0%** 3. Re-scan at higher mAs. - 4. Re-reconstruct with a different filter. - 5. Display on a bigger monitor. # Dr. Tork complains that he cannot see the trabecular bone details in a CT image. A reasonable course of action is to: - 1. Acquire a radiograph. - 2. Administer contrast agent. - 3. Re-scan at higher mAs. - 4. Re-reconstruct with a different filter. - 5. Display on a bigger monitor. # The material marked by the yellow arrow is probably: - **0**% 1. Water - **0%** 2. Fat - **0**% 3. Bone - **0**% 4. Gd - **0**% 5. Cancer T 1 # The material marked by the yellow arrow is probably: 1. Water 2. Fat 3. Bone 4. Gd 5. Cancer T1 Short T1 (bright) Fundamentals of MRI (William G. Bradley, MD PhD FACR # This is not a pipe. It is... 1. whatever you want it to be. 1. To be. 1. don't know. 1. don't know. 1. Too nice | Jeff – Jan-Jakob bridge Pose a set of unanswered questions: we have all these images, things moving, how are we going to make sense of it and respond (adapt) to this information in treatment delivers? | | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | bridge | |