

Q) Which of the following applications does NOT need DIR?		
25%	1. Daily dose accumulations for ART	
27%	2. 4D dose calculation based on 4DCT	
25%	3. Contour propagation from one CT to another (abdomen).	
23%	4. Electron block cutting.	
	Human Stort	

Q) '	Which similarity metric would you use for CT/MR registration?
24%	1. Normalized Cross Correlation
27%	2. Mutual Information
24%	3. Sum of Squared Difference
25%	4. Gradient Descent

Demons Pros & Cons Pros : Fast! (<10 sec), easy to implement, and suitable for parallel architecture (GPU).

Cons:

9

- Limited applications
 - Requires same pixel intensity for same corresponding points.
 - Difficult to regularized underlying deformation

Henry FC

Expected to be sensitive to noise.

B-Spline DIR Pros & Cons (vs. Demons) Pros

- Wider application area (mono-modal, multimodal).
- Easier to control the deformation complexity (achived by adjusting the B spline grid spacing).

Henry HEALTH ST

Cons

.

- Slower in general.

Tip 1. Use multi-resolution approach.

- Use multi-resolution approach
 - Coarse to fine image resolution
 - Low to high DOF transformation
 - Ex) Rigid-body → Affine → coarse resolution grid → fine resolution grid.
- →It will lead to faster and robust registration.
 - →Faster, because large difference are handled in the low resolution.
 - →Robust, because the lower resolution has wider capture range that provides good starting point for the following resolution stage.

Henry S

