

1

2

3

Outline

100

- 1. Data requirements in CT: old beliefs
- 2. New understanding (> 2002)
 - Super short-scans
 - Region-of-interest imaging
 - Dose savings through data collimation
- 3. Full FOV imaging with reduced number of views

Data requirements in CT: old beliefs

Problem

What set of measurements is sufficient to achieve accurate reconstruction of a given region-of-interest (ROI)?

Note: By accurate, we mean "theoretically-exact" and "stable".

linear attenuation coefficient μ in a given region of interest

4

5

Over which (θ, s) - range do we need to know the data to achieve accurate reconstruction of μ in a given ROI?

measurements on lines L_1

Learning from the classical FBP reconstruction formula:

x-ray source

Conclusion:

Tomography is "all or nothing" ???

Data requirements in CT: new understanding (> 2002)

Theory of super short-scans

New data completeness condition*

Given non-truncated fan-beam projections, accurate reconstruction of a given ROI is possible whenever every line passing through the ROI intersects the trajectory of the x-ray source

*Noo F, Detrise M, Clackdoyle R, H. Kudo, "Image reconstruction from fan-beam projections on less than a short-scan", Phys. Med. Biol., 2002. 19

Pare 4. Recommende images 4 in addited Steps-1 agus flowmon she for hereines. 40 The optimizations, the free records and care to applicable and the free records and care to applicable and the steps of the ste

TABLE 4	he 50-cm SFOV	50-cm SFOV at 120 kVp				
SFOV,	CTDI ₁₀₀ at the Center		CTDI ₁₀₀ at the Periphery		CTDI _{vob}	Percentag
cm	Measured, mGy	Percentage Reduction	Measured, mGy	Percentage Reduction	mGy	Reduction
8.6	13.11	30.51	14.79	63.44	16.26	57.90
16.8	18.00	17.13	21.07	40.48	22.87	40.78
20.6	10.09	12.40	20.7	33.91	21.23	29.49
50	20.65 (20.48)	0.05	40.45 (41.93)	21.78	31.5	10.4

Conclusions

- Numerous advances in image reconstruction theory have highlighted paths to reducing the amount of data with no impact on image quality
- The interior problem can be solved by adding a priori knowledge on the attenuation coefficient, but image quality may be slightly impacted
- Dose savings for full ROI imaging may vary between 20% and 60% depending on ROI size (from 20cm to 8cm)
- TV minimization /compressed sensing may allow cutting the dose by a factor two with no impact on image quality
- Hardware developments (new collimator, fast reconstruction engine, fast tube current modulation) are needed for clinical implementation

