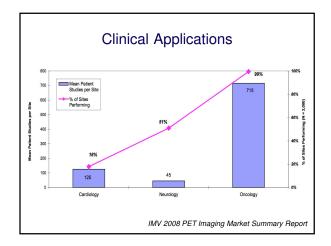

State of the Art in Quantitative Imaging PET/CT


Paul Kinahan, PhD


Director of PET/CT Physics Imaging Research Laboratory Department of Radiology University of Washington, Seattle, WA

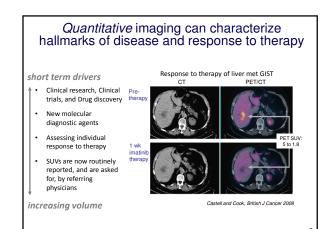
Disclosures

Research Contract, GE Healthcare

[Diagnostic Accuracy of PET/CT exceeds CT or PET only							
Tumor entity	EXCEEDS C	Purpose of the Number			Accuracy (%)			
		imaging studies	of patients	PET/CT	PET	СТ		
Head and neck	Chen et al. (2006) ³⁵	TNM staging	70	95	83 ^a	73 ^a		
	Schoder et al. (2004) ³⁶	Lesion detection	68	96	90 ^a	ND		
NSCLC	Lardinois et al. (2003) ²⁴	T stage N stage	40 37	98 84	80 ^a 87	78 ^a 64		
	Shim et al. (2005) ³⁷	T stage N stage	106 106	86 84	ND ND	79 69 ^a		
Colorectal	Kim et al. (2005) ¹⁰	Recurrence	51	88	71 ^a	ND		
	Votrubova et al. (2006)38	Recurrence	84	90	75 ^a	ND		
Lymphoma	Allen-Auerbach et al. (2004)33	(Re)staging	73	93	84 ^a	ND		
	la Fougère et al. (2006)39	(Re)staging	50	99	98	89 ^a		
Melanoma	Reinhardt et al. (2006)31	(Re)staging	250	97	93 ^a	79 ^a		
	Mottaghy et al. (2007)40	(Re)staging	102	91	92	ND		

ed with PET/CT. Ab

cally significant difference when comp ed; TNM, tumor node metastacie


NSCI C. non

all-cell lung

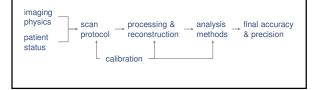
Weber et al. Nature Reviews Clinical Oncology 2008

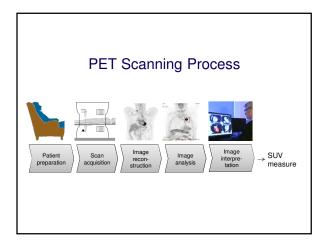
cancer; ND, not

Quantitative Imaging Definitions

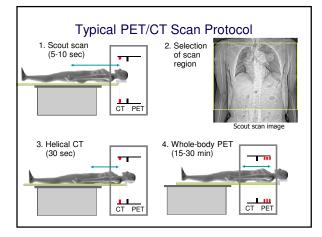
- A biomarker is an objectively measured indicator of biological/pathobiological process or pharmacologic response to treatment
- Qualified biomarker: A disease-related biomarker linked by graded evidence to biological and clinical endpoints <u>and</u> dependent upon the intended use
- Imaging biomarker: a number, set of numbers, or classification derived from an image (in general imaging biomarkers are not surrogate endpoints)
- Validated assay: An assay (i.e. quantitative imaging) that has documented performance characteristics showing suitability for the intended applications

 needed for a qualified biomarker

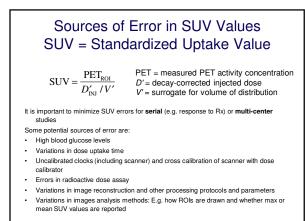

Biomarkers Definitions Working Group. Clin Pharmacol Ther 2001;69(3):89-95.

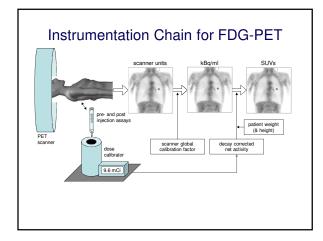

Quantitative Imaging Requirements

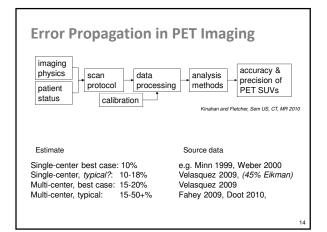
- · Prior studies that measure variance
- · Defined protocols
- · Monitoring of protocols
- Calibration and QA/QC procedures to ensure variance stays within assumed range
- Optional: Techniques and procedures that improve the measurement accuracy

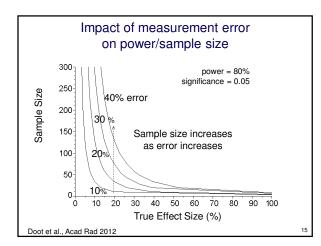

The Imaging Chain

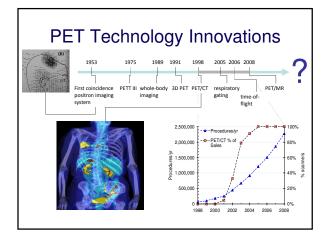
- For quantitative imaging, each component of the imaging chain requires
 - Quality Assurance (i.e protocol)
 - Quality Control (checking what actually happened)
- · Outline for all imaging methods:



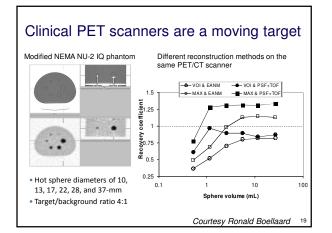








Trial Scenario	error	# of patients	-# 000
Single site	10%	(12)	effect size = 20% power = 80%
Multi-center (good calibration)	20%	42	significance = 0.05
Multi-center (poor calibration)	40%	(158)	



Recent PET Technology Innovations

- Respiratory motion compensation
- Time of flight imaging
- Advanced modeling of PET physics in image reconstruction
- · Extended axial field of view
- Cost effective PET/CT scanners
- New detector systems
- PET/MR scanners
- CT dose reduction methods

Challenges with Implementing Quantitative Imaging - Industry

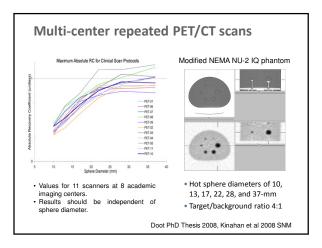
- There is significant variability between manufacturers in allowable scan protocols and trade-offs in image quality
- There are few, if any, tests of the quantitative accuracy of images transferred between display/analysis systems
- Due to several reasons:
 - Lack of standards by which vendors can assure compliance of acquisition/processing algorithms
 Lack of convincing (to vendors) evidence of a
 - market for quantitative imaging

Challenges with Implementing Quantitative Imaging - Imaging Sites

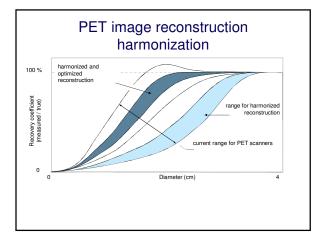
- There is a tension with imaging protocols suitable for current clinical practice
- Often there is no standard clinical practice
- E.g. when 'standard of care' is requested, any of the following may occur:
 - Blood glucose levels may be ignored or not reported
 - Tracer uptake time may vary
 - PET images may be acquired in 2D or 3D
 - PET images may be reconstructed with different algorithms
 PET images may be reconstructed with different smoothing
 - PET mages may be reconstructed with different smooth
 SUVs may be measured differently and/or on different
 - platforms
 - May do an MR or CT scan instead

What do we do?

- There are three main routes of action
 - 1. Accreditation authorities
 - 2. Standards definitions and harmonization initiatives
 - 3. Calibration methods and/or phantoms

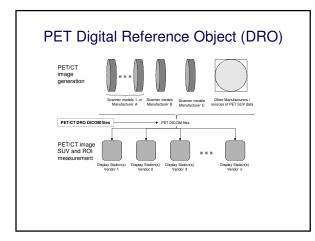


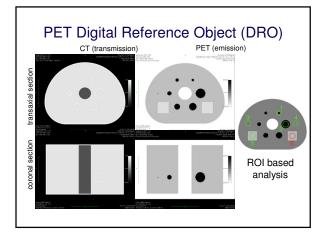
Quantitative Imaging Initiatives


- ACRIN Centers of Quantitative Imaging Excellence (CQIE)
- Quantitative Imaging Biomarkers Alliance (QIBA)
 Now includes the Uniform Protocols for Imaging in Clinical Trials (UPICT)
- Quantitative Imaging Network (QIN)
- American Association of Physicists in Medicine Task Group 145 (Quantitative Imaging for PET)
- Reconstruction Harmonization Project (ACRIN / SNM-CTN / QIN / QIBA)
- · EANM and EORTC initiatives

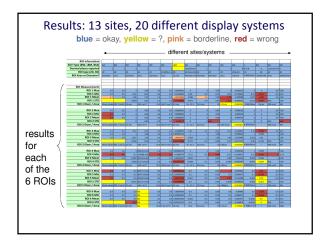
Calibration phantoms for Quantitative PET/CT Standards and/or Accreditation

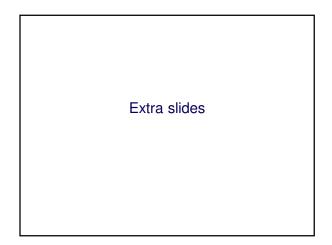
- Uniform Cylinder (used by ACRIN and many others)
- ACR PET phantom
- NEMA NU-2 Image Quality (IQ) phantom
- Modified NEMA Image Quality (IQ) phantom
- SNM CTN phantom
- Cross Calibration Phantom with NIST-traceable
 ⁶⁸Ge standard for Dose Calibrator
- Digital reference object

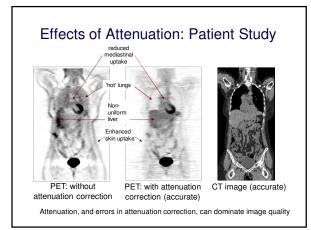





PET Digital Reference Object (DRO)

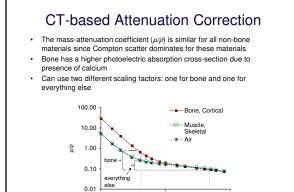

- The DRO is a synthetically generated set of DICOM image files of known voxel values for PET and CT
- · Intended to test computation of SUVs and ROIs
- Version 1 released 10/31/2011
- More info at depts.washington.edu/petctdro



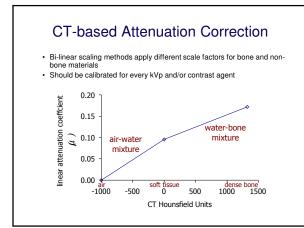


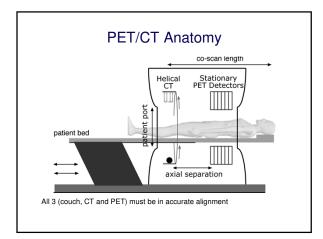
CONCLUSION

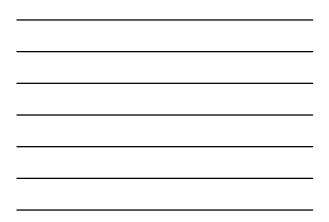
State of the art: Quantitative imaging requirements

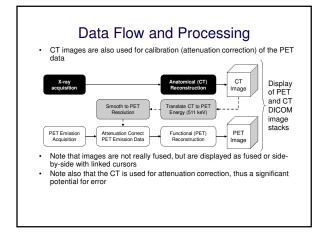

- Test-retest studies in the literature demonstrate that quantitative image acquisition protocols are possible
- To enable quantitative image acquisition protocols we need
 - Standards by which users can assure compliance
 The above standards can be provided by
 - The above standards can be provided by standardized methods, e.g. QIBA Profiles and UPICT Protocols
 - Education for (and adoption by) radiologists, if they are to remain in the image processing chain

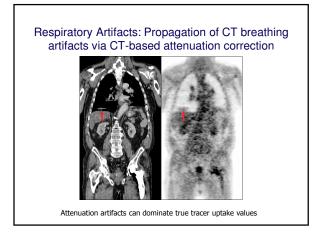

Typical Radiation Doses				
Туре	Techniques	Effective Dose (mSv)		
PET	Administration 190-370 MBq (5-10 mCi) of ¹⁸ F-FDG	3.6 - 7 (1.9E-02 mSv/MBq)		
Dx Helical CT	Wide range of settings reported. Coverage: C+A+P	7 – 43		
PET + Low dose Helical CT	110 - 120 kVp, 30 - 60 mAs, 0.75 - 6.5 mm slice collimation, 1.25 - 2.0 pitch. Scan axial coverage: 851 - 910 mm	1.3 – 4.5 Geometrical mean 2.4 Total for PET/CT: 6 - 10		

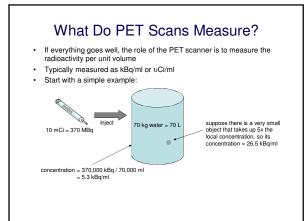


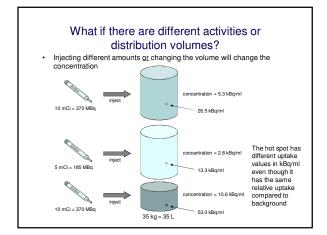

100 keV

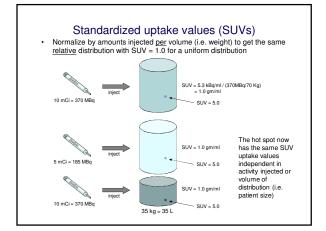

1000

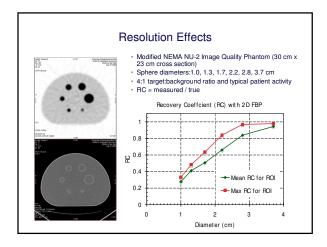


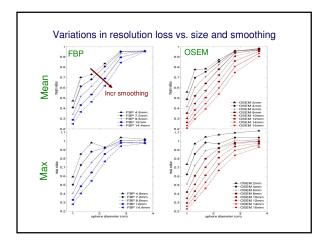


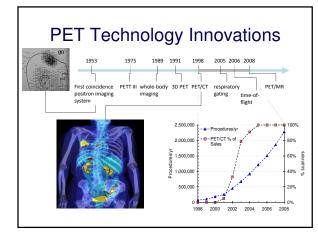







14





Question

What is the goal of a combined PET/CT scanner?

- 1. Accurate attenuation correction
- 2. Accurate image alignment
- 3. Revitalize nuclear medicine
- 4. Job security for physicists

