

Oncospace: An eScience program for the advancement of care in radiation oncology

· Objectives:

McNutt 2012

- To develop an analytical database and infrastructure to store clinical information for personalized medicine and future analysis
- Project 1: Integration of Data Collection with Clinical Workflow
- Project 2: Database Design: Security and Distributed Web-Access
- Project 3: Tools for Query, Analysis, Navigation and Decision Support
- Project 4: Data Mining, Decision Support and Biostatistic Research,

JOHNS HOPKIN

That was descriptive only

Actual computation is with a Euclidean Distance Transform Algorithm which is more efficient than the process described.

Michael Kazhdan, Patricio Simari, Todd McNutt, Binbin Wu, Robert Jacques, Ming Chuang, and Russell Taylor, "A Shape Relationship Descriptor for RadiationTherapy Planning" Medical Image Computing and Computer-Assisted Intervention 5762/2009(12), 100–108 (2009)

H&N Retrospective Planning Demonstration

- 15 random pts from a DB of 91 H&N pts for OVHassisted planning demonstration
 - IMRT-SIB: 58.1 Gy, 63 Gy and 70 Gy
- DVH objectives of 13 OARs queried from the DB as initial planning goals in a **leave-one-out manner**
- Dosimetry of 3 sets of plans were compared:
 - CP Clinical plans

•

- OP1 OVH-assisted plans after 1 optimization
- **OP2** Final OVH-assisted plans

JOHNS HOPKINS	
HEDICINE	

	CP	OP1	OP2	Wilcoxon p test			
PTV ^{55.1}	Avg.	Avg.	Avg.	CP vs OP1	CP vs OP2	OP1 vs OP2	
V100(%)	94.1	94.3	94.5	0.56	0.23	0.85	
V98(%)	97.1	97.9	98	0.3	0.24	0.6	
$V_{95}(\%)$	98.9	99	99	0.8	0.71	0.6	
$D_5 - D_{95}(Gy)$	16	13.9	13.7	0.2	0.24	0.85	
CI58.1	1.2	1.2	1.2	0.55	0.76	0.95	
PTV ⁶³							
V100(%)	98.7	99.1	99	0.08	0.15	0.9	
V98(%)	99.2	99.6	99.6	0.12	0.23	0.55	
Vos(%)	99.7	99.8	99.9	0.34	0.77	0.43	
$D_5 - D_{95}(Gy)$	9	8	8.1	0.1	0.28	0.67	
CT ⁶³	1.3	1.3	1.3	0.6	0.45	0.65	
PTV ⁷⁰							
V100(%)	95.1	95.4	95.3	0.5	0.32	0.9	
Vos(%)	98.6	98.8	99	0.4	0.21	0.9	
V95(%)	99.8	99.9	99.9	0.3	0.2	0.93	
$D_5 - D_{95}(Gy)$	3.7	3	3.2	0.6	0.97	0.7	
CI ⁷⁰	1.2	1.3	1.3	0.6	0.42	0.88	
Abbrev nal OVH-assis	<i>iations</i> : C ted plan	P = clinica	al plan; OF	P1 = first-around	l OVH-assisted	i plan; OP2 =	

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	OAR	End point	CP	OP1	OP2	Wilcoxon p value		
$ \begin{array}{c} \cot d^{-4} \mathrm{mm} & D_{0,1cc} & \{45.6 \ \ 39.5 \ \ 38.7 \ \ e^{-0.0001} & <0.0001 & 0.7 \\ \mathrm{mandble} & D_{0,1cc} & \{7.4 \ \ o7.8 \ \ o7.9 \ \ 1 & 0.91 \\ \mathrm{branstem} & D_{0,1cc} & \{7.7 \ \ 40.4 \ \ 40 \ \ -6.005 \ \ <0.005 \ \ <0.88 \\ \mathrm{ipsi-lateral} & P(30\mathrm{Gy}) & 55 \ \ 57 \ \ 375 \ \ 0.21 \ \ 0.38 \ \ 0.88 \\ \mathrm{parotid} & \mathrm{parotid} &$		-	Avg.	Avg.	Avg.	CP vs OP1	CP vs OP2	OP1 vs OP2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	cord+4mm	D _{0.1 cc}	45.6	39.5	38.7	< 0.0001	< 0.0001	0.7
	mandible	D _{0.1 cc}	67.4	67.3	67.8	0.79	1	0.91
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	brainstem	D _{0.1 cc}	47.7	40.4	40	< 0.005	< 0.005	0.85
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	brain	D1 cc	50.8	50	49.6	0.5	0.38	0.88
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ipsi-lateral parotid	V(30 Gy)	05	57	58.5	0.21	0.3	0.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	contra-lateral parotid	V(30 Gy)	52	45	43.3	<0.0001	<0.0001	0.56
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	larynx	V(50 Gy)	55.4	53.3	50.1	0.66	0.57	0.91
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	esophagus	D1 cc	53.9	54.1	54	1	0.9	0.95
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ipsi-lateral brachial plexus	D _{0.1 cc}	62.2	62.7	62	0.97	0.93	0.9
oral muccosa Prefector S GN 37.6 39.5 40 0.6 0.74 0.93 ipsi-lateral Dame 31 25.7 28 0.32 0.47 1 contra-lateral Dame 25 19.5 21 0.2 0.43 1	contra-lateral brachial plexus	D _{0.1 cc}	58.4	59.44	59.53	0.79	0.84	0.86
ipsi-lateral D _{meter} 31 25.7 26 0.32 0.47 1 inner ear contra-lateral D _{meter} 25 19.5 21 0.2 0.43 1	oral mucosa	$V_{cc}(66.5 \text{ Gy})$	37.6	39.5	40	0.6	0.74	0.93
contra-lateral D _{mesn} 25 19.5 21 0.2 0.43 1	ipsi-lateral inner ear	Dmean	31	25.7	26	0.32	0.47	1
inner ear	contra-lateral	D _{mesn}	25	19.5	21	0.2	0.43	1
Abbreviations: CP = clinical plan: OP1 = first-around OVH-assisted plan: OP2 =	47	hraviations: C	P = clinic	al plan: O	P1 = first	-around OVH-:	assisted plan: O	P2 =

JOHNS HOPKINS

Dosimetric Results: CP vs. AP

Primary OARs (optic nerve, chiasm, brainstem, brain, cord and mandible) • AP: reduced by 1.14 Gy (p=0.004) overall

PTV coverage (V₉₅ in %)
AP: increased by 0.26% (*p*=0.02) overall

Secondary OARs (parotid, brachial plexus, larynx, inner ear,

AP: reduced by 1.16 Gy (*p*=0.04) overall

- PTV homogeneity and conformity
 AP: significant better homogeneity in PTV⁶³ (p=0.002) and PTV⁷⁰ (p < 0.0001)
 - AP: significant better conformity in PTV^{58.1} (p=0.009).

AP: fully automated plans CP: clinical plans manually created by dosimetrists in their regular WayKINS

Physician Preference

Dr. Sanguineti reviewed the isodose distributions and DVH curves without knowing the origins of the plans.

Based on his opinion,

- All APs (40/40) are clinically acceptable and can be used to treat patients

- 27/40 APs are clinically superior to the CPs

<u>T</u>

Summary

- Automated TPS without user intervention
 - OVH: retrieve geometrically "similar" pts DB of prior plans: control plan quality of future plans
- Quality of new plans is independent of experience of planners; consistent with quality of prior plans in DB
- Clinical trade-offs made by physician are captured in the database
- · Easily implemented to other disease sites (pancreas and prostate)
- Easily implemented to VMAT modality (used current DB for VMAT)
- Easily applied with any commercial TPS

JOHNS HOPKINS

Acknowledgments

- · JHU CS
 - Russ Taylor PhD
 - Misha Kazhdan PhD
 - Patricio Simari PhD
- JHU Physics
- Alex Szalay PhD
- Philips PROS
- Karl Bzdusek
- Erasmus/MAASTRO - Steven Petit PhD

- JHU-RO
 - Binbin Wu PhD
 - Kim Evans MS
 - Joseph Moore PhD
 - Wuyang Yang MS, MD
 - Giuseppe Sanguinetti MD
 - Russell Hales MD
 - Joseph Herman MD
 - John Wong PhD - Theodore DeWeese MD