MR Functional Imaging to Guide Radiotherapy: Challenges and Opportunities

Michael Milosevic, MD

Department of Radiation Oncology, University of Toronto
Radiation Medicine Program, Princess Margaret Hospital
Toronto, Canada

Abstract

MR Functional Imaging

• Predict local control and survival
• Early response assessment (clinical trials)
• Target identification and delineation
• Dose escalation (radioresistant regions)
• Treatment adaptation

Personalized Radiation Medicine

Anatomic targeting

Molecular targeting

Complementary strategies to improve tumor control and reducing side effects

Goals of functional imaging
MR Functional Imaging

- Dynamic contrast enhanced MR
- Diffusion weighted MR imaging
- Blood Oxygen Level Dependent (BOLD) MR
- MR spectroscopy

Cervical Cancer

- Primary tumor
- Lymph node metastasis

Tumor Regression During RT

- Gy 20 Gy
- Gy 38 Gy
- Gy 48 Gy

Pre-Tx
Abnormal Tumor Vasculature

Konerding, 2001; Miller, 2005

Tumor vessels

Tumor Microenvironment

Cairns and Denko, 2006

Hypoxia
Acidosis
High IFP

MR Enhancement Dynamics

Enhancement pattern influenced by:
- Imaging parameters
- Contrast injection
- Contrast characteristics
- Vessel distribution
- Vessel permeability
- Blood flow
- Blood volume
- Blood transit time
- Extra-cellular volume
- Extra-cellular composition

Dynamic MR imaging of cervix cancer
Haider, Yeung, Milosevic
DCE MR and Clinical Outcome

Cervical cancer: DCE MR and clinical outcome

<table>
<thead>
<tr>
<th>Author</th>
<th>n</th>
<th>Parameter</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hawighorst, 1998</td>
<td>57</td>
<td>Low k_{ep}</td>
<td>Survival</td>
</tr>
<tr>
<td>Yamashita, 2000</td>
<td>36</td>
<td>High “permeability”</td>
<td>Poor response</td>
</tr>
<tr>
<td>Mayr, 2000</td>
<td>16</td>
<td>$RSI_{10<2.5}$</td>
<td>Local control</td>
</tr>
<tr>
<td>Loncaster, 2002</td>
<td>50</td>
<td>A_{low}</td>
<td>Survival</td>
</tr>
<tr>
<td>Zahra, 2009</td>
<td>13</td>
<td>High K_{trans} or k_{ep}</td>
<td>Better regression</td>
</tr>
<tr>
<td>Semple, 2009</td>
<td>8</td>
<td>K_{trans}</td>
<td>Clinical response</td>
</tr>
<tr>
<td>Donaldson, 2010</td>
<td>50</td>
<td>$EF25s >28%$</td>
<td>Survival</td>
</tr>
<tr>
<td>Andersen, 2011</td>
<td>81</td>
<td>Low $RSI_{10<2.5}$, low AUC</td>
<td>Local control</td>
</tr>
</tbody>
</table>

EF25s: Enhancing fraction 25s post-injection

RSI_{10%}: 10th percentile RSI at 90-120s post-injection

DCE MR and Clinical Outcome

- DCE MR before and during RT
- Voxel-based analysis
- $RSI_{10<2.5}$: 10th percentile relative signal intensity at 90-120s post-injection

![Graphs showing local control, cause-specific survival, and overall survival.](image)

Mayr, 2010

Uncertainties in DCE MR

- Image acquisition
- Analysis
- Modeling
- Reporting
- Need for validation and standardization

![Graphs showing relationships.](image)

Cenic, 2000 and Purdie, 2001
Standardization

Estimating Kinetic Parameters From Dynamic Contrast-Enhanced T1-Weighted MRI of a Diffusible Tracer: Standardised Quantities and Symbols

Workshop Report
The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations

Imaging vascular function for early stage clinical trials using dynamic contrast-enhanced magnetic resonance imaging

Clinical Questions

• DCE MR vs. DCE CT
 – CT is available in every radiation treatment department
• Timing of DCE MR during fractionated RT
• Identification and delineation of relevant volumes
• Analysis methods and reporting metrics
 – Volume averaged vs. pixel-based analysis
 – Intensity-time curve analysis vs. kinetic modeling
 – Which model?
• Biologic relevance

Region of Interest

Cervix
Uterus
Parametria

19 international experts in GYN radiation oncology
(T2W images)
Region of Interest

Is ADC more sensitive to microscopic residual tumor than T2 or DCE MR? Implications for adaptive RT planning?

DWI in Cervix Brachytherapy

Mean ADC

Restricted diffusion as a function of target volume:
- GTV: 37% low ADC < 1.2 × 10^{-3} mm²/s
- HR CTV: 22%
- IR CTV: 12%

Haack, 2010

Primary Endpoints

Recommendations

- The primary end point should be either K_{trans} (min⁻¹) or IAUGC (mm Gd/min).
- Vascularised tumour volume can be obtained by summing voxels with values above a predetermined threshold.
- Ideally, measurements of K_{trans} or IAUGC should be made for each voxel in the ROI or VOI.
- In tissues with substantial motion, ROI or VOI average measurements may be more appropriate.
- Three-dimensional measurements are preferred, as single-slice measurements (in theory) may be prone to bias due to incomplete sampling and errors in positioning the slice.

British Journal of Cancer (2005) 92, 1599–1610
Tumor Heterogeneity

Red: Vessels, Green: Hypoxia, Blue: Doxorubicin
Courtesy of Ian Tannock

Accounting for Heterogeneity

Pixel-based analysis of 13 patients with cervical cancer

Analysis of at least 3 slices is necessary to assure that between-patient variability exceeds within-patient variability

Voxel-Based Analysis

Relative signal intensity (RSI)

Map of Log-rank p-values for locoregional control
Best locoregional control
Andersen, 2012
Generalized Kinetic Model

Generalized kinetic model
\[
\frac{dC(t)}{dt} = K^{\text{max}} \cdot C(t) - k_{e} \cdot C(t)
\]

where \(K^{\text{max}} = F \cdot \rho \cdot (1 - \text{Hct}) \)
for flow-limited conditions

and \(K^{\text{max}} = PS \cdot \rho \)
for permeability-limited conditions

Tofts, 1999 and Zahra, 2007

Two compartment model

Generalized Kinetic Model

Generalized kinetic model
\[
\frac{dC(t)}{dt} = K^{\text{max}} \cdot C(t) - k_{e} \cdot C(t)
\]

Uncertainties:
- \(C(t) \) from \(S(t) \)
- Arterial input function \(C_{p}(t) \)
- Microvascular Hct

Tofts, 1999 and Zahra, 2007

Two compartment model

DCE MR Arterial Input Function

Average AIF’s from 38 patients with cervix cancer

MRTM: Multiple reference tissue method
EIA: Measured from external iliac artery
Parker: Published population AIF (Parker et al, 2006)

Cheng Yang, 2010
DCE CT-MR Comparison

38 patients, MR AIF from MRTM

DCE CT-MR Comparison

38 patients with cervix cancer

<table>
<thead>
<tr>
<th></th>
<th>Mean K_{trans}</th>
<th>Mean k_{ep}</th>
<th>Mean v_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>0.16 min$^{-1}$</td>
<td>0.65 min$^{-1}$</td>
<td>0.04</td>
</tr>
<tr>
<td>MR - MRTM AIF</td>
<td>0.09 (r=0.6)</td>
<td>0.50 (r=0.8)</td>
<td>0.02 (r=0.3)</td>
</tr>
<tr>
<td>MR - Published AIF</td>
<td>0.18 (r=0.6)</td>
<td>0.56 (r=0.8)</td>
<td>0.02 (r=0.6)</td>
</tr>
</tbody>
</table>

MRTM: Multiple reference tissue method
Published AIF: Parker et al, 2006

Vascular-Targeted Therapy

Phase I-II study of RTCT + Sorafenib

Phase I: Sorafenib dose escalation, 3 patients / dose level
Phase II: Sorafenib at MTD

External RT + Cisplatin 40 mg/m2

Markers of biologic response
(pO_2, IFP, DCE CT, DCE MRI, Biopsies, Blood)
DCE MR Response to Sorafenib

Patient 1
Cervix
T2b N0
Baseline | Day 7 of Sorafenib | Day 14, S+RT

Patient 2
Cervix
T1b N1
Baseline | Day 7 of Sorafenib | Day 14, S+RT

K\text{trans}: Response to Sorafenib

Biomarker Changes

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>After 1 week of Sorafenib</th>
<th>After 1 week of RTCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor volume</td>
<td>78 cm³</td>
<td>"86 cm³"</td>
<td>"57 cm³"</td>
</tr>
<tr>
<td>MR DCE K\text{trans}</td>
<td>0.016 s⁻¹</td>
<td>"0.008 s⁻¹"</td>
<td>0.018 s⁻¹</td>
</tr>
<tr>
<td>Mean pO₂</td>
<td>14 mm Hg</td>
<td>"3 mm Hg"</td>
<td>13 mm Hg</td>
</tr>
<tr>
<td>IFP</td>
<td>24 mm Hg</td>
<td>21 mm Hg</td>
<td>"16 mm Hg"</td>
</tr>
</tbody>
</table>

* Significant relative to baseline
Future of DCE MR

- Improved access to MR
- New, large MW or targeted contrast agents

![Integrated MR-RT Suite](image1)

Contrast Agent Transport

- Trans-Vascular Transport
- Interstitial Transport

![Contrast Agent Transport Diagram](image2)

Imaging Convective Transport

- Liposomal Contrast Agents
- Trans-Vascular Convection
- Interstitial Convection

![Imaging Convective Transport Diagram](image3)
Summary

- DCE MR can provide valuable information to guide personalized cancer treatment.
- Optimization, standardization and validation are required to obtain biologically and clinically relevant information.
- Sharing of data sets would facilitate model development and validation and a better understanding of clinical value.

Voxel-Based Analysis

Map of Log-rank p-values for progression-free survival

Best progression-free survival

Andersen, 2012