

Personalized Radiation Medicine

Anatomic targeting

Molecular targeting

Complementary strategies to improve tumor control and reducing side effects

MR Functional Imaging

Goals of functional imaging

- Predict local control and survival
- Early response assessment (clinical trials)
- Target identification and delineation
- · Dose escalation (radioresistant regions)
- Treatment adaptation

MR Functional Imaging

- Dynamic contrast enhanced MR
- Diffusion weighted MR imaging
- Blood Oxygen Level Dependent (BOLD) MR
- MR spectroscopy

Primary tumor

Lymph node metastasis

MR Enhancement Dynamics

Enhancement pattern influenced by:

- Imaging parameters
- Contrast injection
- Contrast characteristics
- Vessel distribution
- Vessel permeability
- Blood flow
- Blood volume
- Blood transit time
- Extra-cellular volume
- Extra-cellular composition

Dynamic MR imaging of cervix cancer

Haider, Yeung, Milosevic

DCE MR and Clinical Outcome

Cervical c	ancer: DCE	MR and	clinical	outcome	

Author		Parameter	Outcome
Hawighorst, 1998	57	Low k _{ep}	Survival
Yamashita, 2000	36	High "permeability"	"Poor response"
Mayr, 2000	16	RSI _{10%} <2.5	✤ Local control
Loncaster, 2002	50	Low A _{Brix}	Survival
Zahra, 2009	13	High K^{trans} or k_{ep}	"Better regression"
Semple, 2009	8	Ktrans	"Clinical response"
Donaldson, 2010	50	EF25s >28%	Survival
Andersen, 2011	81	Low RSI10%, low AUC	✤ Local control
EF25s: Enhancing fractio RSI _{10%} : 10 th percentile RS	n 25s pos 81 at 90-1:	st-injection 20s post-injection	

4

Standardization

Estimating Kinetic Parameters From Dynamic Contrast-Enhanced T₁-Weighted MRI of a Diffusable Tracer: Standardized Quantities and Symbols

JOURNAL OF MAGNETIC RESONANCE IMAGING 10:223-232 (1999)

Workshop Report The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations

British Journal of Cancer (2005) 92, 1599-1610

Imaging vascular function for early stage clinical trials using dynamic contrast-enhanced magnetic resonance imaging

Eur Radiol (2012) 22:1451-1464

Clinical Questions

- DCE MR vs. DCE CT -CT is available in every radiation treatment department
- Timing of DCE MR during fractionated RT
- Identification and delineation of relevant volumes
- · Analysis methods and reporting metrics
 - Volume averaged vs. pixel-based analysis
 - Intensity-time curve analysis vs. kinetic modeling
 - Which model?
- Biologic relevance

Karen Lim, 2010

Region of Interest

Is ADC more sensitive to microscopic residual tumor than T2 or DCE MR? Implications for adaptive RT planning?

Primary Endpoints

Recommendations

- The primary end point should be either K^{trans} (min⁻¹)) or IAUGC (mM • Gd min).
- Vascularised tumour volume can be obtained by summing voxels with values above a predetermined threshold. Ideally, measurements of $K^{\rm trans}$ or IAUGC should be made for each voxel
- in the ROI or VOI.
- In tissues with substantial motion, ROI or VOI average measurements may be more appropriate.
- Three-dimensional measurements are preferred, as single-slice • measurements (in theory) may be prone to bias due to incomplete sampling and errors in positioning the slice.

British Journal of Cancer (2005) 92, 1599-1610

Generalized Kinetic Model

Two compartment model

 $\frac{dC_t(t)}{dt} = K^{trans} \cdot C_p(t) - k_{ep} \cdot C_t(t)$

where $K^{trans} = F \cdot \rho \cdot (1 - Hct)$ for flow-limited conditions

Generalized kinetic model

and $K^{\text{trans}} = PS \cdot \rho$ for permeability-limited conditions Tofts, 1999 and Zahra, 2007

DCE CT-MR Comparison

	Mean K ^{trans}	Mean k _{ep}	Mean v _p
СТ	0.16 min ⁻¹	0.65 min ⁻¹	0.04
MR - MRTM AIF	0.09 (r=0.6)	0.50 (r=0.8)	0.02 (r=0.3)
MR - Published AIF	0.18 (r=0.6)	0.56 (r=0.8)	0.02 (r=0.6)

Cheng Yang, 2010

Biomarker Changes				
	Baseline	After 1 week of Sorafenib	After 1 week of RTCT	
Tumor volume	78 cm ³	*86 cm ³	*57 cm ³	
MR DCE Ktrans	0.016 s ⁻¹	*0.008 s ⁻¹	0.018 s ⁻¹	
Mean pO ₂	14 mm Hg	*3 mm Hg	13 mm Hg	
IFP	24 mm Hg	21 mm Hg	*16 mm Hg	

Future of DCE MR

- Improved access to MR
- New, large MW or targeted contrast agents

Imaging Convective Transport

Summary

- DCE MR can provide valuable information to guide personalized cancer treatment.
- Optimization, standardization and validation are required to obtain biologically and clinically relevant information.
- Sharing of data sets would facilitate model development and validation and a better understanding of clinical value.

2

Princess Margaret Hospital

Radiation Oncology UNIVERSITY OF TORONTO

