

Mon	te Carlo	Introduction	n		
Why	Monte Carl	o ?			
•	Monte Car accurate co in particula	lo dose cal ompared to Ir in comple	culation s analytica ex geome	hould be al dose c tries	e more alculation,
•	Differences algorithms proton then higher dos proton bea	s between l can be mo rapy compa e gradients	Monte Ca are clinical ared to ph and the	Irlo and a Ily signifi Ioton the end of ra	analytical cant in rapy due to <u>nge</u> of
•	Monte Car other than	lo can be u dose (fluer	ised to pre nce, LET,	edict qua) for re	intities esearch

MASSACHUSETTS GENERAL HOSPITAL MARVARD MEDICAL SCHOOL

Source of range uncertainty in the patient	Range
Independent of dose calculation:	- uncertaining
Measurement uncertainty in water for commissioning	± 0.3 mm
Compensator design	± 0.2 mm
Beam reproducibility	± 0.2 mm
Patient setup	± 0.7 mm
Dose calculation:	
Biology (always positive)	+ 0.8 %
CT imaging and calibration	± 0.5 %
CT conversion to tissue (excluding I-values)	± 0.5 %
CT grid size	± 0.3 %
Mean excitation energies (I-values) in tissue	± 1.5 %
Range degradation; complex inhomogeneities	- 0.7 %
Range degradation; local lateral inhomogeneities *	± 2.5 %

Source of range uncertainty in the patient	Range
Independent of dose calculation:	
Measurement uncertainty in water for commissioning	± 0.3 mm
Compensator design	± 0.2 mm
Beam reproducibility	± 0.2 mm
Patient setup	± 0.7 mm
Dose calculation:	
Biology (always positive)	+ 0.8 %
CT imaging and calibration	± 0.5 %
CT conversion to tissue (excluding I-values)	± 0.5 %
CT grid size	± 0.3 %
Mean excitation energies (I-values) in tissue	± 1.5 %
Range degradation; complex inhomogeneities	- 0.7 %
Range degradation; local lateral inhomogeneities *	± 2.5 %
Total (excluding*) Total	2.7% + 1.2 mm 4.6% + 1.2 mm

Source of range uncertainty in the patient	Range	
Independent of dose calculation:		
Measurement uncertainty in water for commissioning	± 0.3 mm	
Compensator design	± 0.2 mm	
Beam reproducibility	± 0.2 mm	
Patient setup	± 0.7 mm	
Dose calculation:		
Biology (always positive)	+ 0.8 %	
CT imaging and calibration	± 0.5 %	
CT conversion to tissue (excluding I-values)	± 0.5 %	→ ± 0.2 %
CT grid size	± 0.3 %	
Mean excitation energies (I-values) in tissue	± 1.5 %	
Range degradation; complex inhomogeneities	- 0.7 %	→ ± 0.1 %
Range degradation; local lateral inhomogeneities *	± 2.5 %	→ ± 0.1 %
Total (excluding *)	2.7% + 1.2 mm	24%+12
Total	4.6% + 1.2 mm	2.4 /0 4 1.2

Monte Ca	rlo Sui	mmary/	Comments/Co	onclusions		
Linking your in-house MC to the planning system						
Proton XiO: passive Scattering	ASTROID: scanning, in- house		Script actions: • creates input files - scattering: range comp, apertu			
		beam current modulation - scanning: phase space input				
	OPAS cript	 creates patient geometry from CT files includes absolute dose normalization submits simultaneous jobs to a cluster 				
The script is massive (several thousand lines of code). Monte Carlo codes do not provide solutions for their connection to treatment planning systems						
DCA: Dose Comparison Application, in-house	CERR: MATLAB- based, modified in-house	DICOM	• reports dose-to-tissue / dose-to-water • dose on planning grid and CT grid			
			MASSACHUSETTS GENERAL HOSPITAL RADIATION ONCOLOGY	HARVARD MEDICAL SCHOOL		

Monte Carlo Summary/Comments/Conclusions

Main take-home messages

- Due to steep dose gradients and the end of range of proton beams, the clinical significance of Monte Carlo dose calculation is higher in proton therapy compared to photon therapy; Monte Carlo can lead to margin reduction in proton therapy !
- Proton therapy treatment head simulation for passive scattering is cumbersome
- Patient dose calculation is still slow in routine use (at least for passive scattering systems)
- The link to the planning system is key

