# Acoustic Radiation Force Based Imaging: An Overview

Kathy Nightingale, Michael Wang, Stephen Rosenzweig, Veronica Rotemberg, Samantha Lipman, Ned Rouze, Mark Palmeri

Department of Biomedical Engineering Duke University

### Disclosures

Intellectual Property related to radiation force based imaging technologies

Siemens Medical Solutions, Ultrasound Division – research agreement providing equipment and technical support

### Learning objectives

- To understand the differences between acoustic images, qualitative elasticity images, and quantitative shear wave images
- To understand the tradeoffs between resolution and accuracy in shear wave imaging
- To understand the limitations of the assumptions made by time-of-flight based algorithms

### Elasticity Imaging

### Generate images portraying information about the stiffness (elasticity) of tissue:

- 1) Mechanical excitation
  - External
  - Physiological
  - Focused acoustic radiation force
- 2) Image tissue response Ultrasound
  - MRI
  - Optical
- 3) Generate image of tissue stiffness

  - Relative stiffness
    Quantify tissue stiffness (shear wave speed or elastic moduli)

### Why image mechanical properties?

- Manual palpation by clinicians what do they feel?
  - Masses (e.g. breast, liver, prostate)
  - Pathology (e.g. cirrhotic liver)
  - Large inherent mechanical contrast between soft tissues
- Palpation has limitations:
- Physical location
  - Size of palpable structure
  - Doctor-to-doctor variability ("hard", "soft")
  - Repeatability

Why use acoustic radiation force?

- Focused within organ of interest
- Small strain

# Typical soft tissue material properties

| Young's<br>Modulus, E<br>(kPa) | Shear<br>Modulus, <b>µ</b><br>(kPa) | Shear Wave<br>Speed<br>(m/s) | Bulk<br>Modulus, K<br>(GPa) | Ultrasonic<br>Wave Speed<br>(m/s) | Example            |
|--------------------------------|-------------------------------------|------------------------------|-----------------------------|-----------------------------------|--------------------|
| ~1                             | ~0.3                                | ~0.5                         | 2-2.5                       | 1490-1540                         | Fat                |
| 1-24                           | 0.3-8                               | 0.5-2.8                      | 2-2.5                       | 1490-1540                         | Liver              |
| 3-30                           | 1-10                                | 1-3.2                        | 2-2.5                       | 1490-1540                         | Skeletal<br>Muscle |
| 6-45                           | 2-15                                | 1.4-3.9                      | 2-2.5                       | 1490-1540                         | Prostate           |
| 20-150                         | 6.7-50                              | 2.6-7.1                      | 2-2.5                       | 1490-1540                         | Myocardium         |
| 30-300                         | 10-100                              | 3.2-10                       | 2-2.5                       | 1490-1540                         | Fibrotic Liver     |

Shear modulus and shear wave speed provide more inherent contrast than bulk modulus and ultrasonic wave speed.

UMR 29(12)1705-171













- Radiation force occurs with all wave propagation
- Increased intensity to move microns
- Diagnostic or HIFU transducers
- Typical ARFI excitation:
- Frequency = 2–6 MHz
- Intensity (sppa<sub>.5</sub>, linear) =  $1500 3000 \text{ W/cm}^2$ Mechanical Index = 1.5-3.0
- Meenanical macx = 1.5
- Duration < 1 msec
- Temperature rise = 0.03-0.1 °C
- Tissue Displacement =  $10-15 \ \mu m$

# ARFI – Prostate Imaging

- Prostate cancer (PCA) facts
  - Affects 1/6 men in the US
  - $-2^{nd}$  leading cause of cancer death in men
- Prostate cancer diagnosis
  - Initially screened through DRE and PSA
  - Confirmed through TRUS guided needle biopsy
     PCA not visualized in ultrasound
    - Random or systematic sampling
    - Low detection rates
- ARFI imaging a potential tool for targeting needle biopsy and monitoring lesion growth/response to treatment

ttp://www.cancer.org/Cancer/ProstateCancer/DetailedGuide/prostate-cancer-key-statistics

# Prostate Anatomy and Pathology









| - |
|---|

# ARFI - Monitoring Thermal Ablation

- Thermal ablation increases tissue stiffness
   Ablated tissues no distinct in ultrasound images
- Elasticity methods can monitor thermal ablation processes:
  - Radio Frequency ablation (RFA)
  - High intensity focused ultrasound (HIFU) ablation
- Cardiac ablations are commonly performed to eliminate aberrant electrical conduction pathways



Images courtesy of Dr. Pat Wolf

# Shearwave Speed Quantification

·



- Vibrating table or punch<sup>1-3</sup>
- Acoustic radiation force<sup>4, 5-7</sup>

Evaluate resulting tissue response/shear wave propagation

Shear wave speed related to shear modulus (i.e. material stiffness), and structures within tissue

'Lerner et. al., 1988; <sup>s</sup>Muthupillai et. al., 1995; <sup>s</sup>Sandrin et al, UMB, 2003; 'Sarvazyan et al, UMB, 1998 'Nightingale et al, UMB, 2003; <sup>s</sup>Bercoff et al, IEEE UFFC, 2004; <sup>z</sup>Chen et al, JASA, 2004







# Liver Biopsy

- Diagnostic gold-standard
  - Invasive
    - Infection
       Hemorrhage



- Pain
   Limited sampling
- Costly (time and money)
- Not suitable for longitudinal monitoring of disease progression / resolution
- Can a non-invasive liver stiffness estimate be used as a surrogate measure of liver fibrosis?



### *Commercial Radiation Force Methods* Products now in commercial market (not in US):

– Siemens 'Virtual Touch Tissue Quantification'®

- rEl® (qualitative (ARFI) images)
- qEI® (quantitative SWS measurements)
- SVI® (quantitative images)
- Initial release abdominal probe, now additional probes
- Super Sonic Imagine, SSI Aixplorer® (quantitative images)
  - Initial release breast probe, now additional probes

### Liver Stiffness/SWS Quantification/Fibrosis

Over 400 articles in clinical literature evaluating performance of qEI ™ in the context of liver fibrosis staging

Good diagnostic accuracy for the noninvasive staging of liver fibrosis Friedrich-Rust, J. Viral Hepatitis, 2012

Toshima, J. Gastroenterol, 2011 Crespo, J. Hepatology, 2012 Sporea, Med. Ultrason, 2010



- Heterogeneity in thresholds why? Sporea et. al., 2010 Depth within Liver
- Disease etiology (CHC, CHB, NASH/NAFLD) Other sources of increases in stiffness (i.e. inflammation, congestion)

SWS Behavior in Heterogeneous Material















# Summary – Radiation Force Based Elasticity Imaging

- Clinically available
  - Qualitative methods (ARFI imaging)
  - Quantitative methods (shear wave speed)
- Need large-scale clinical studies and research validation of the quantitative methods
  - monitoring disease progression?
  - monitoring response to therapy?
- Standardization among manufacturers RSNA/QIBA efforts

# Acknowledgements

- NIH NIBIB R01EB002132
- NIH NCI R01CA142824
- Siemens Medical Solutions, USA, Inc., Ultrasound Division

Duke ARFI/Ultrasound Team



# <image>





