MEASUREMENT METHODS FOR IMRT QA

Arthur Olch, Ph.D., FAAPM essor of Clinical Pediatrics and Radiation Oncolog rsity of Southern California Keck School of Medici

> Chief of Physics Radiation Oncology Program Children's Hospital Los Angeles

Outline

- Describe three common methods of IMRT QA measurements
- Describe the pros and cons of each
- Compare results between methods
- Review literature on method results

Three Most Common Measurement Methods

1. Beam-by-Beam (BbB) - perpendicular to chamber or diode array or EPID

- 2. Composite (summation) BbB (CBbB) -
- perpendicular to chamber or diode array or EPID 3. True composite - (all beams at actual planned positions) film + chamber or detector array in phantom
- 4. Ion chamber only in true composite geometry

Pros

- BbB and CBbB Every part of every field is sampled, fast acquisition.
- CBbB only one dose image to analyze. More uniform dose for analysis than BbB.
- True composite-Actual dose summation in a 2D slice of the 3D dose, couch, gantry errors included. Only one dose image to analyze.

Cons

- BbB, CBbB no sense of 3D summation. Can't know significance of regional errors in each beam.
- BbB can get any Gamma result you want for relative dose mode by normalizing to a different place.
- CBbB errors from each field may cancel on summation.
- True composite more time consuming if film used. Does not sample every part of each beam. If an Array is to be used, less accurate for nearly lateral beams.

BbB Gamma Results Don't Correlate to 3D Dose

- 3 plans, an <u>acceptable</u> version (all IC doses within 4% of TPS) and an <u>unacceptable</u> version.
- 8-18 ion chamber measurements in high dose low gradient and critical structure locations for true composite IMRT plans compared to EPID or Matrix beam-by-beam Gamma passing rates.

Kruse, Med. Phys. 37, 2010

	Average gamma passing percentage: MATRIXX analysis			
2% dose/ Acceptable plan	2 mm DTA Unacceptable plan	3% dose/ Acceptable plan	/3 mm DTA Unacceptable plan	
			99.9 (0.2)	
			96.9 (3.2)	
			99.3 (0.7)	
	94.9 (3.8) 92.4 (4.5) 92.8 (4.2)	94.9 (3.8) 98.3 (1.1) 92.4 (4.5) 86.8 (7.0)	94.9 (3.8) 98.3 (1.1) 99.2 (0.8) 92.4 (4.5) 86.8 (7.0) 97.6 (3.2)	

Reconstruction of Patient 3D Dose from Simulated BbB Measurements

- Compared simulated BbB measurements with induced errors to calculated 3D doses in CTV and various organs at risk.
- Large rate of false negatives (you think the plan is ok but it is not).
 <u>The larger clinical errors happen for higher IMRT QA</u> <u>Gamma passing rates.</u>

Are the Results of the Methods Comparable?

- True Composite (film) vs. Mean BbB
- True Composite (film) vs. CBbB
- 2%,2mm tolerance, 20% dose threshold, relative dose mode

Which Method is Best?

- Will one method detect failing plans better than another? BbB and TC better than CBbB
- Are results from one method comparable to the other method? Generally No
- If the Gamma metric passes, can relatively small regions with errors be related to the dose impact in the patient? TC

Conclusions

- Each has its own pros and cons with variable ability to identify a delivery-to-TPS mismatch.
- One can not compare the results from one IMRT QA method to another
- True composite provides at least a 2D slice out of a 3D dose distribution, CBbB risks masking errors
- None of the methods discussed tells us the error in delivery of the 3D dose to the patient's PTV or critical organs.