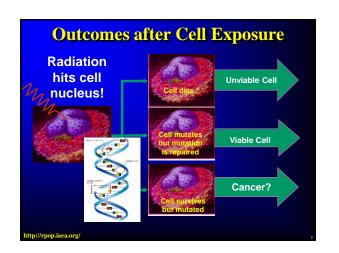
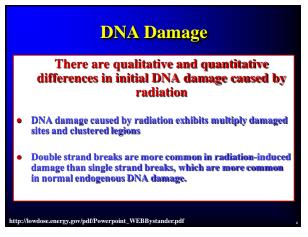
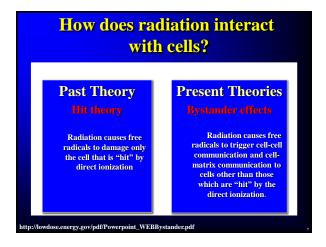
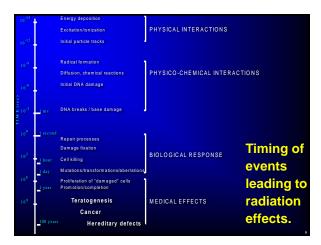

Review of the Radiobiological Principles of Radiation Protection


Cari Borrás, D.Sc., FAAPM, FACR Radiological Physics and Health Services Consultant Washington DC, USA


Learning Objectives


- 1. To understand the radiobiological basis of radiation protection standards.
- 2. To define the radiation protection magnitudes and units, their values and their practical measurement.
- 3. To distinguish between stochastic and deterministic effects.



RP Dosimetric Quantities and Units Tissue Reactions

Dose to Tissue = Absorbed Dose * RBE (Gy)

RBE: radiobiological effectiveness

differs for

- different biological endpoints and
- different tissues or organs

RP Dosimetric Quantities and Units Stochastic Effects

Evolution of Terminology

ICRP 26 (1977)	ICRP 60 (1991)	ICRP 103 (2007)
*	Equivalent Dose	Equivalent Dose#
Effective Dose Equivalent	Effective Dose	Effective Dose

The SI unit is J kg⁻¹ and the special name is sievert (Sv)

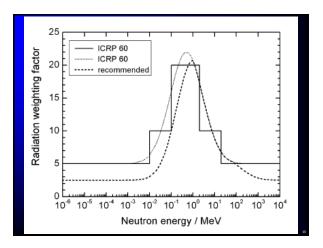
RP Dosimetric Quantities and Units Stochastic Effects (Sv)

Equivalent Dose, H_T , in a tissue T:

$$\mathbf{H}_{\mathrm{T}} = \Sigma_{\mathrm{R}} w_{\mathrm{R}} \mathbf{D}_{\mathrm{T,R}}$$

 w_R is the radiation weighting factor, which accounts for the detriment caused by different types of radiation relative to photon irradiation

D_{T.R} is the absorbed dose averaged over the tissue T due to radiation R


w_R values are derived from in vivo and in vitro RBE studies They are independent of dose and dose rate in the low dose region

Radiation Weighting Factors (ICRP 103)

Radiation type and energy range		
Photons	1	
Electrons and muons	1	
Protons (1991, 2007), pions (2007)	2	
Alpha particles, fission fragments, heavy ions		
Neutrons, energy < 10 keV		
10 keV to 100 keV	Fu	
> 100 keV to 2 MeV		
> 2 MeV to 20 MeV		
> 20 MeV		

^{*} No specific term

Radiation Weighted Dose proposed but not accepted

RP Dosimetric Quantities and Units Stochastic Effects (Sv)

Effective Dose, E

$$\mathbf{E} = \Sigma_{\mathbf{T}} \mathbf{w}_{\mathbf{T}} \mathbf{H}_{\mathbf{T}} = \Sigma_{\mathbf{T}} \Sigma_{\mathbf{R}} \mathbf{w}_{\mathbf{T}} \mathbf{w}_{\mathbf{R}} \mathbf{D}_{\mathbf{R},\mathbf{T}}$$

WT represents the relative contribution of that tissue or organ to the total detriment resulting from uniform irradiation of the body

$$\Sigma_{\rm T} w_{\rm T} = 1$$

A uniform dose distribution in the whole body gives an effective dose numerically equal to the radiationweighted dose in each organ and tissue of the body

Tissue Weighting Factors (ICRP 103)

Tissue	w_{T}	$\sum w_{\mathrm{T}}$
Bone-marrow (red), Colon, Lung, Stomach, Breast, Remainder Tissues*	0.12	0.72
Gonads	0.08	0.08
Bladder, Oesophagus, Liver, Thyroid	0.04	0.16
Bone surface, Brain, Salivary glands, Skin	0.01	0.04

Total 1.00

Remainder Tissues: Adrenals, Extrathoracic region, Gall bladder, Heart, Kidneys, Lymphatic nodes, Muscle, Oral mucosa, Pancreas, Prostate, Small intestine, Spleen, Thymus and Uterus/cervix

RP Dosimetric Quantities and Units

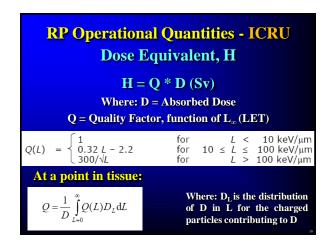
Activity, A

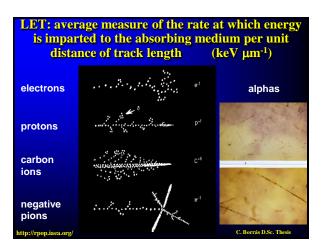
The activity A of an amount of a radionuclide in particular energy state at a given time t is

$$A = dN/dt$$

where d N is the expectation value of the number of spontaneous nuclear transitions from that energy state in the time interval d t

The SI unit of activity is the Becquerel (Bq)


$$1 \text{ Bq} = 1 \text{ s}^{-1}$$


RP Dosimetric Quantities and Units Stochastic Effects (Sv) Committed Equivalent Dose For radionuclides incorporated in the body $H_{\rm T}(\tau) = \int_{t_0}^{t_0+\tau} \dot{H}_{\rm T}(t) {\rm d}t$ where τ is the integration time following the intake at time t_0 Committed Effective Dose $E(\tau) = \sum_{\rm T} w_{\rm T} \cdot H_{\rm T}(\tau)$ Adults: 50 y Children: 70 y

Limitations of Equivalent and Effective Doses

- ▲ Are not directly measurable
- Point quantities needed for area monitoring (in a non-isotropic radiation field, effective dose depends on the body's orientation in that field)
- ▲ Instruments for radiation monitoring need to be calibrated in terms of a measurable quantity for which calibration standards exist

Operational protection quantities are needed!

Task	Operational quantities for			
	area monitoring	individual monitoring		
Control of effective dose	ambient dose equivalent $H^*(10)$	personal dose equivalent $H_p(10)$		
Control of skin dose	directional dose equivalent $H'(0.07, \Omega)$	personal dose equivalent $H_p(0.07)$		

H*(10) and H_P (10) – photons > 12 keV and neutrons H_P (0.07) – α and β particles and doses to extremities

 Ω in RP usually not specified. Instead, $Maximum\ H'(0.07,\,\Omega)\ is\ obtained$ by rotating meter seeking maximum reading

Assessment of Effective Dose from Individual Monitoring Data

$$E = H_{p}(10) + \sum_{j} e_{j,\text{inh}}(\tau) \cdot I_{j,\text{inh}} + \sum_{j} e_{j,\text{ing}}(\tau) \cdot I_{j,\text{ing}}$$

- H_p (10) personal dose equivalent from external exposure
- $e_{j,inh}(\tau)$ is the committed effective dose coefficient for activity intakes by inhalation of radionuclide j
- $I_{j,inh}$ is the activity intake of radionuclide j by inhalation
- $e_{j,ing}(\tau)$ is the committed effective dose coefficient for activity intakes of radionuclide j by ingestion
- $I_{i,ing}$ is the activity intake of radionuclide j by ingestion

RP Dosimetric Quantities and Units Stochastic Effects

Collective Effective Dose, S

(due to Individual Effective Doses E₁ and E₂)

$$S(E_1, E_2, \Delta T) = \int_{E_1}^{E_2} E \frac{dN}{dE} dE$$

- d N / d E: number of individuals who experience an effective dose between E and E + dE
- ΔT specifies the time period within which the effective doses are summed

System of Quantities for Radiological Protection

Absorbed dose, D

Dose Quantities defined in the body

 $\begin{aligned} & Equivalent \ dose, \ H_T, \ in \ an \\ & organ \ or \ tissue \ T \end{aligned}$

Effective dose, E

Committed doses, $H_T(\tau)$ and $E(\tau)$

Collective effective dose, S

Operational Quantities

For external exposure

Dose quantities for area monitoring individual monitoring

For internal exposure

Activity quantities in combination with biokinetic models and computations

RP Dosimetric Quantities and Units

E is calculated averaging gender, age and individual sensitivity **Caveats**

Effective Dose should not be used for

- A Retrospective dose assessments
- **Estimation of specific individual human** exposures and risks
- ▲ Epidemiological studies without careful consideration of the uncertainties and limitations of the models and values used

RP Dosimetric Quantities and Units Caveats

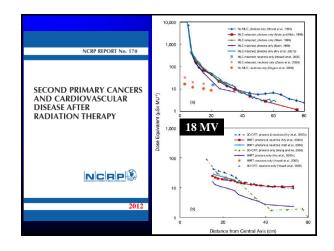
Dose to Individuals

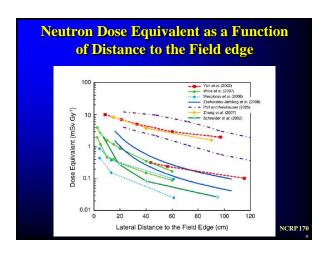
Absorbed doses to organs or tissues should be used with the most appropriate biokinetic parameters, biological effectiveness of the ionizing radiation and risk factor data, taking into consideration the associated uncertainties.

Medical exposures fall in this category!

Effective Dose vs Organ Doses in Medical Exposures

Effective Dose is an adequate parameter to intercompare doses from different radiological techniques


However, to assess individual risks it is necessary to determine organ doses

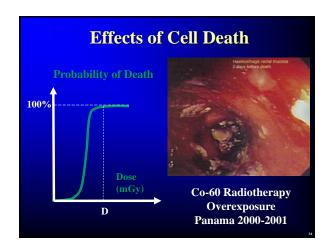


Methods for Determining Organ and Tissue Doses in Medical Imaging (ICRU 74, 2005)

- ▲ Measurements in physical phantoms
- ▲ Monte Carlo radiation transport calculations
 - Mathematical phantoms
 - Special features of the active bone marrow
 - Voxel phantoms
 - Anthropometric phantoms

In radiation therapy, the TPS can calculate organ dos How well?

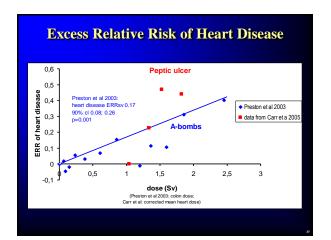
THE AIM OF RADIATION **PROTECTION**

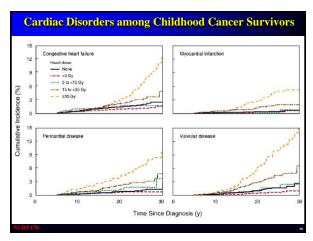

- ▲ To prevent (deterministic) harmful tissue effects
- **▲** To limit the probability of stochastic effects to levels deemed to be acceptable

Deterministic Effects

Radiation effects for which generally a threshold level of dose exists above which the severity of the effect is greater for a higher dose.

Stochastic Effects


Radiation effects, generally occurring without a threshold level of dose, whose probability is proportional to the dose and whose severity is independent of the dose.



Radiation Syndromes (Whole Body Exposures) Acute Chronic Annual Threshold: 0.5 Gy (3-7 days) radiation Death: 1 Gy, 2-3 Gy with medical care exposures exceeding 6 Gy (6-9 days) 0.7 - 1.0 Gy and cumulative > 50 Gy doses > 2-3 Gyover 2-3 years LD50/60 (Acute) CNS (central 3.3 to 4.5 Gy no medical managemen nervous system) 6 to 7 Gy with medical management

Radiation-induced Cardiovascular Disease

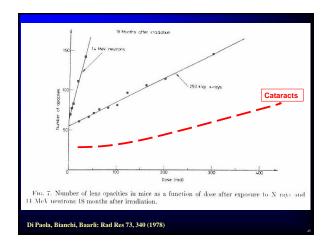
- A Radiotherapy well documented side effect of irradiation for breast cancer, Hodgkin's disease, peptic ulcers & others.
- ▲ A-bomb data statistically significant dose-related incidence.
- ▲ Chernobyl some evidence in the Russian study on emergency workers for a doserelated increase

From current evidence, a judgement can be made of a threshold acute dose of about 0.5 Gy (or 500 mSy) for both cardiovascular disease and cerebrovascular disease. On that basis, 0.5 Gy may lead to approximately 1% of exposed individuals developing the disease in question, more than 10 years after exposure. This is in addition to the high natural incidence (circulatory diseases account for 30-50% of all deaths in most developed countries).

Draft ICRP on Tissue Effects. http://www.icrp.org/page.asp?id=116

Irradiation of Gonads Threshold doses for approximately 1% incidence in morbidity

Effect	Organ/tissue	Time to develop effect	Acute exposure (Gy)	Highly fractionated (2 Gy per fraction) or equivalent protracted exposures (Gy)	Annual (chronic) dose rate for many years (Gy y ⁻¹)
Temporary sterility	Testes	3-9 weeks	~0.1	NA	0.4
Permanent sterility	Testes	3 weeks	~6	<6	2.0
Permanent sterility	Ovaries	< 1week	~3	6.0	>0.2


Draft ICRP on Tissue Effects. http://www.icrp.org/page.asp?id=116

Threshold doses for approximately 1% incidence in morbidity					
Effect	Organ/tissue	Time to develop effect	Acute exposure (Gy)	bHighly fractionated (2 Gy per fraction) or equivalent protracted exposures (Gy)	Annual (chronic) dose rate for many years (Gy y ⁻¹)
Main phase of skin reddening	Skin (large areas)	1-4 weeks	<3-6	30	NA
Skin burns	Skin (large areas)	2-3 weeks	5-10	35	NA
Temporary hair loss	Skin	2-3 weeks	~4	NA	NA
Late atrophy	Skin (large areas)	> 1 year	10	40	NA
Telangiectasia @ 5 years	Skin (large areas)	> 1 year	10	40	NA
Draft ICRP on Tissue Effects. http://www.icrp.org/page.asp?id=116					

Increased Risk of Cortical and Posterior Subcapsular Cataract Formation

- ▲ Reanalysis of Atomic Bomb Survivors
- A Cohort Of Patients With Chronic Exposure to Low-dose-rate Radiation
- ▲ From Cobalt-60 Contaminated Steel in their Residences
- Studies of Children Exposed to Low Doses from the Chernobyl (Ukraine) Accident
- **▲ Chernobyl Clean-up Workers**
- **▲ Commercial Airline Pilots**
- **▲** Space Astronauts

Threshold doses for approximately 1% incidence in morbidity

Effect	Organ/tissue	Time to develop effect	Acute exposure (Gy)	Highly fractionated (2 Gy per fraction) or equivalent protracted exposures (Gy)	Annual (chronic) dose rate for many years (Gy y ⁻¹)
Cataract (visual	Eye	>20 years	~0.5	~0.5	~0.5 divided
impairment)					by years duration

Draft ICRP on Tissue Effects. http://www.icrp.org/page.asp?id=116

Dose Limits – ICRP 1991, 2007

For occupational exposure of workers over the age of 18 years

- An effective dose of 20 mSv per year averaged over five consecutive years (100 mSv in 5 years), and of 50 mSv in any single year;
- An equivalent dose to the lens of the eye of 150 mSv in a year;
- An equivalent dose to the extremities (hands and feet) or the skin of 500 mSv in a year

For apprentices (16-18 years of age)

• effective dose of 6mSv in a year.

Dose Limits – ICRP 2011

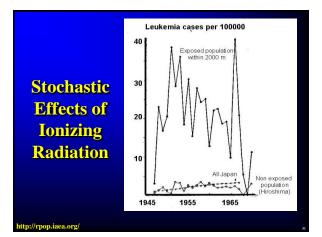
For occupational exposure of workers over the age of 18 years

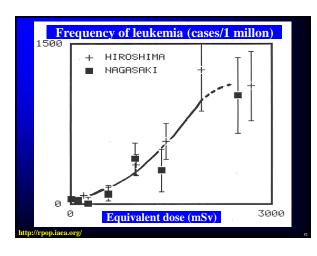
- An effective dose of 20 mSv per year averaged over five consecutive years (100 mSv in 5 years), and of 50 mSv in any single year;
- An equivalent dose to the lens of the eye of 20 mSv in a year;
- An equivalent dose to the extremities (hands and feet) or the skin of 500 mSv in a year

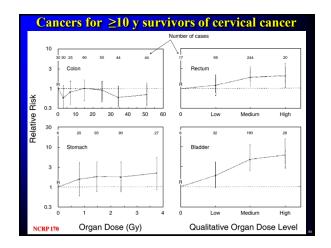
For apprentices (16-18 years of age)

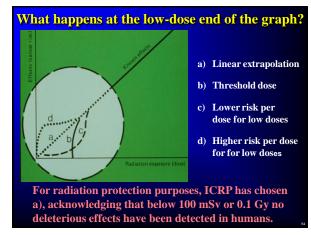
effective dose of 6mSv in a year.

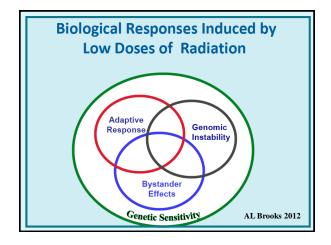
Harmful Tissue Effects


Radiation effects for which generally a threshold level of dose exists above which the severity of the effect is greater for a higher dose.

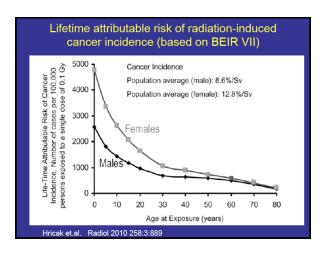

Stochastic Effects

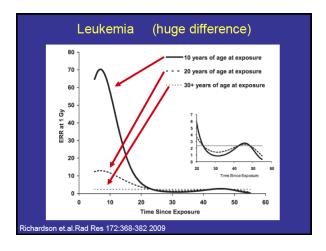

Radiation effects, generally occurring without a threshold level of dose, whose probability is proportional to the dose and whose severity is independent of the dose.

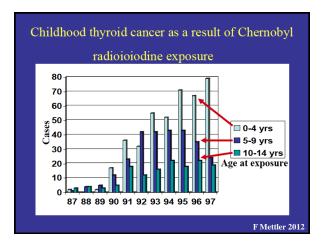

Cancer

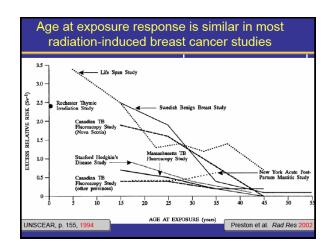

Heritable Effects

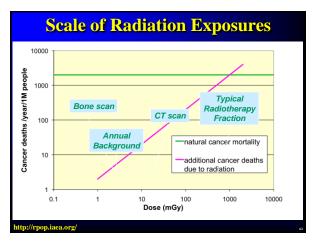
Dose and Dose-Rate Effectiveness Factor (DDREF)

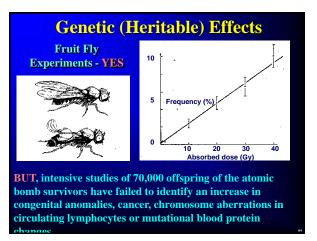

A judged factor that generalizes the usually lower biological effectiveness [per unit of dose] of radiation exposures at low doses and low dose rates as compared with exposures at high doses and high dose rates)


ICRP is taking a value of 2 for the DDREF BEIR VII chose a value of 1.5


56


ICRP Detriment-Adjusted Nominal Risk
Coefficient for Cancer Induction
(ICRP 103, 2007)
(10⁻² Sv⁻¹ – Percent per Sievert)


Exposed Population	Cancer Induction
Whole	5.5
Adult	4.1



ICRP Detriment-Adjusted Nominal Risk Coefficient for Cancer and Heritable Effects (ICRP 103, 2007)

(10⁻² Sv⁻¹ – Percent per Sievert)

Exposed Population	Cancer Induction	Heritable Effects
Whole	5.5	0.2
Adult	4.1	0.1

HERITABLE EFFECTS

should not be confused with

EFFECTS FOLLOWING
IRRADIATION IN UTERO

some of which are deterministic; some, stochastic

IRRADIATION IN UTERO ICRP 103 (2007)				
End Point	Period	Dose Threshold	Normal incidence in live-born	
Death	Pre- Implantation	100 mGy		
Malformations	Major Organogenesis	100 mGy	1 in 17	
Severe Mental Retardations	8 - 15 Weeks Post-Conception	300 mGy	1 in 200	
Cancer Risk	In Utero Exposure	None*	1 in 1000	

Principles of Radiation Protection				
General Medical Exposur				
Justification	of Practices			
benefit to the exposed individuals or to society to outweigh the radiation detriment? benefits and risks of available alternative techniques that do not involve ionizing radiation?				
Dose Li	Dose Limitation			
for occupational and public exposure	not applicable to medical exposure			
Optimization of Protection				
ALARA	dose minimum necessary to achieve the required diagnostic or therapeutic objective			