

Integral dose

Conclusion I:

The total energy deposited in a patient ("integral dose") is always lower when treating with protons. This, theoretically, should always result in an advantage for proton treatments. However,

- the dose distribution matters
- this may not always result in a significant clinical gain (site dependent; clinical trials?)

MASSACHUSETTS GENERAL HOSPITAL HARVARD MEDICAL S

the delivery system matters

Uncertainties when predicting dose	
Applied range uncertainty margins for ne	on-moving target
Source of range uncertainty in the patient	Range
Independent of dose calculation:	
Measurement uncertainty in water for commissioning	± 0.3 mm
Compensator design	± 0.2 mm
Beam reproducibility	± 0.2 mm
Patient setup	± 0.7 mm
Dose calculation:	
Biology (always positive)	+ 0.8 %
CT imaging and calibration	± 0.5 %
CT conversion to tissue (excluding I-values)	± 0.5 %
CT grid size	± 0.3 %
Mean excitation energies (I-values) in tissue	± 1.5 %
Range degradation; complex inhomogeneities	- 0.7 %
Range degradation; local lateral inhomogeneities *	± 2.5 %
Total (excluding *)	2,7% + 1,2 mm
Total	4.6% + 1.2 mm
H. Paganetti: Phys. Med. Biol. 57, R99-R107 (2012)	
MASSACRUSETTS GENERAL MONTAL RADIATION ONCOLOGY	HARVARD MEDICAL SCHOOL

Uncertainties when predicting dose

Note:

In proton therapy, generic margin recipes are not sufficient !

Treatment planners need to understand the origin and magnitude of range uncertainties !

GENERAL HOSP

HARVARD MEDICAL SCHOOL

Uncertainties when predicting dose

Conclusion II:

- Proton treatment planning needs to be done by <u>experienced</u> planners who understand the impact of range uncertainties.
- For some sites (e.g. prostate) range uncertainties prevent us from exploiting the full potential of proton therapy.

GENERAL HOSP

HARVARD MEDICAL SCHOOL

What do you consider the <u>main</u> obstacle in physics before proton therapy can become mainstream?		
21% ^{1.}	Treatment planning is too complex (need more training)	
<mark>20%</mark> 2.	Current range uncertainties are unacceptable and need to be reduced	
<mark>21%^{3.}</mark>	Unproven clinical advantage of a lower integral dose	
19% ⁴ .	Biological consequences of different dose distributions compared to photons	
19% ⁵ .	Proton therapy will never be a mainstream treatment option	
	CARACTERISTIC	

