Stereotactic Body Radiation Therapy Quality Assurance Educational Session

J Perks PhD, UC Davis Medical Center, Sacramento CA

SBRT fundamentals

- Extra-cranial treatments
- Single or small number (2-5) of fractions
- Stereotactic immobilization
- Image guidance
- Control of organ motion

Outline

- Published guidelines
 - ASTRO / ACR
- AAPM Task Group 101 report
- UC Davis experience
 - Commissioning
 - Ongoing QA
- UC Davis FMEA of SBRT delivery

ASTRO / ACR guidelines (2010)

- Qualifications and roles of personnel
- Quality control / safety
- Simulation and treatment
- Potters L, Kavanagh B, Galvin JM, et al. American Society for Therapeutic Radiology and Oncology (ASTRO) and American College of Radiology (ACR) practice guideline for the performance of stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys. 2010;76:326–332

ASTRO / ACR guidelines (2010)

- Generic / formulaic
- Somewhat nonspecific
- Lacks the word "recommend"

AAPM Task Group 101 (2010)

- Comprehensive, readable report (24 pages, 24 authors), Benedict et al Medical Physics, Vol. 37, No. 8, August 2010
- Distinguishing features 3D CRT SBRT
 - Increased number of beams
 - Non-coplanar beams
 - Small or no margins for penumbra
 - Inhomogeneous dose distribution

AAPM Task Group 101 -Recommendations

- Patient selection
 - SBRT is still developing
 - Patients should be treated either on or according to NCI (RTOG) or similar protocols
 - Ensures strict guidelines for volumes, prescriptions etc, developed by leaders in the field are followed
 - Clinical trials should be employed for new indications

AAPM Task Group 101 -Recommendations

- Simulation and imaging
 - Guidelines including length of scan and slice thickness
 - Ensure target and organ at risk coverage, 1 3 mm slices
 - ¹⁸FDG PET for enhanced specificity and sensitivity, useful for staging
 - Resolution limit of PET

AAPM Task Group 101 -Recommendations

- Treatment planning
 - Very high local control GTV and CTV are identical
 - ITV and PTV concepts
 - PTV margin 5mm radial and 1cm sup / inf
 - With 4D CT sup / inf margin reduced to 5mm

AAPM Task Group 101 -Recommendations

- Calculation grid size
 - Published IMRT data shows a 2.5mm grid gives 1% accuracy in high dose gradients
 - 4mm grid c.f. 1.5mm grid gives 5.6% difference for prescribed dose
 - Use 2mm grid for SBRT calculations

AAPM Task Group 101 -Recommendations

- Heterogeneity correction
 - Convolution / superposition accounts for recoil electron transport
 - Radiological Physics Center thorax phantom and RTOG 0236
 - Pencil beam algorithms not recommended

	tunee testing, et	ommissioning and qua	anty assurance	
^	-		•	
TABLE V. Summiry of pub	hished QA recommendations for SBRT and S	BRT-related techniques.		
Source	Parpose	Proposed test	Reported achievable tolerance	Proposed frequency
				Initial commissionin
Rvn et al., 2001*	End-to-end localization accuracy	Stereo x rav/DRR fusion	1.0 to 1.2 mm root mean square	and annually thereaf
Ryn et al., 2001*	Intrafraction targeting variability	Stereo x ray/DRR fusion	0.2 nm average, 1.5 nm maximum	Daily (during treatme
				Initial commissionin
Verellen et al., 20039	End-to-end localization accuracy	Hidden target (using stereo x ray/DRR fusion)	0.41 ± 0.92 mm	and annually thereof
				Initial commissionin
Verellen et al., 2003 ^b	End-to-end localization accuracy	Hidden target (using implanted fiducials)	0.28 ± 0.36 mm	and annually thereaf
	ALC: 10	Dosimetric assessment of hidden target	1.12	Initial commissioni
Yu et al., 2004 ^e	End-to-end localization accuracy	(using implanted fiducials)	0.68±0.29 mm	and annually thereaf
Sharpe et al., 20064	CBCT mechanical stability	Constancy comparison to MV imaging isocenter (using hidden targets)	0.50±0.5 mm	Baseline at commissio
Sharpe et al., 2000	CBCT mechanical stability Overall positioning accuracy.	(using hidden targets)	0.50±0.5 mm	and monthly thereal
	Overall positioning accuracy, including image registration	Woston-Lutz test modified to make use of the in-more		Initial commissioni
Galvin et al., 2008°	(frame-based systems)	winston-Lutz test modified to make use of the in-room imaging systems	≤2 mm for multiple couch angles	and monthly thereal
Palta et al., 2008	MLC accuracy	Light field, radiographic film, or EPID	<0.5 mm (especially for IMRT delivery)	Armally
Falla 61 68., 2000	MOC decanary	Light little, tablepapare and, et al to	sour min (aspecially its mater secrety)	Initial commissioni
Solberg et al., 20088	End-to-end localization accuracy	Hidden target in anthronomorphic phantom	1.10 ± 0.42 mm	and annually therea
	Respiratory motion tracking and gating			
Jiang et al., 2008h	in 4D CT	Phantoms with cyclical motion	N/A	N/A
Bissonnette et al., 2008	CBCT geometric accuracy	Portal image vs CBCT image isocenter coincidence	±2 mm	daily

End to end test Winston Lutz test CBCT stability MLC accuracy

UC Davis experience as example

- Background
- Commissioning experience
- Ongoing (patient specific) QA

Commissioning SBRT at UC Davis

- Digital Winston Lutz test
- Fitting volunteers in SBRT frame
- Phantom (end to end) studiesRPC lung phantom

Commissioning SBRT at UC Davis

- Digital Winston Lutz test
- Fitting volunteers in SBRT frame
- Phantom studies
 - RPC lung phantom

Commissioning SBRT at UC Davis

- Digital Winston Lutz test
- Fitting volunteers in SBRT frame
- Phantom studies
 - RPC lung phantom

UC Davis SBRT practice

- Linac based Elekta platform
 - Static non-coplanar
 - Limited number of IMRT plans

UC Davis SBRT practice

• Stereotactic frame – abdominal compression

UC Davis SBRT practice

- Heterogeneity correction
- Pinnacle planning system v.9.0

UC Davis SBRT practice

- Fluoroscopy to evaluate diaphragm motion
- Cone Beam CT for on set alignment

Kilovoltage PlanarView images (XVi)

UC Davis patient specific QA processes

- Patient specific QA
 - Physics check of co-registration 4D CT
 - Plan review / chart rounds
 - Patient dry run
 - Map check and Quasar delivery QA
 - Daily diaphragm motion view and cone beam $\ensuremath{\text{CT}}$
 - Procedural pause / time out
 - Physics presence throughout delivery

Energy	Dose Rx	Which	Lobe		PTV volume (cc)	# of fields	% PTV receiving Rx dose	IDL	%PTV receivi minimi 45Gy (90%T	ing um	hot spo in PTV (>5%)	t Vol outs PTV >5 Gy/PTV	2.5	Conformality Index
6MV	1250cGy x4fx	Right	up	per	16.83	8	95.0%	76.20	99.7	%	Y	2.0	0%	1.07
Max do at 2cm from PT (Gy)	volume IV PTV volume	density correct	ion	Spina cord dose (Gy) (Max)	Esopi (Gy)(r	nax)	lpsi Brachia plexus (Gy) (max)	l lps Bro (G)	chea & ilateral inchus) Max)	lun (<1	Ŭ%)	Heart 30Gy (max)	Skin	
21.50 Dos	3.98 se cons	straints		10.6	16	.5	18.9	-	18.3	3	.01%	0.5	18.9	Gy
	Sp	inal co	ord	ma	1x < 2	22G	y, < 0.	35c	c < 1	80	Зy			
	Es	ophag	us	< 5	cc to	150	3y, ma	x <	25G	y				

Heart Max < 30Gy, < 15cc to 26Gy

Central airways Max < 30Gy, < 4cc to 15Gy

Failure Modes and Effects Analysis Intro:

- Process started by department interacting with hospital with QA committee
- One analysis per year
- Disciplines
 - Radiation oncologist, physicist, dosimetrist, therapist, clinical engineer, QA committee members (nurse managers)
- "Failure mode and effects analysis for lung stereotactic body radiation therapy" Perks et al Int J Radiat Oncol Biol Phys. 2012 Jul 15;83(4):1324-9. Epub 2011 Dec 22.

Failure Modes and Effects Analysis Process:

- Step by step breakdown of patient flow from every team member
- Overlap of responsibilities – Develop flow chart (modes)

Process:

- 28 steps for treatment
- Turn process chart into failure modes
- What do we do at this point – What could go wrong?
 - That could never happen?
 - But what if?

Failure modes:

- For each step in the process at least one potential failure was derived
- Three factors were associated with each mode
- Probability– detectability severity
- Score 1 10 for each factor

Probability:

- Likelihood of occurrence
 - Score 1 for event happening to 1% of patients
 - Score 10 for every patient

Detectability:

- How likely are we to catch the failure
 - Score 1 for very easy to catch
 - Score 10 for almost impossible

Severity:

- The consequences of the failure reaching the patient
 - Score 1 for no dosimetric effect, may cause discomfort or inconvenience
 - Score 10 for reportable event, 20% or greater dose difference, injury or death

	Probability	Detectability	Severity
1 – 2	1% of patients	Very easy	No dosimetric effect
3 – 4	5% of patients	Human error	5% dose difference
5	Moderate	Lucky catch	10% dose difference
6 – 8	Once per day	Very difficult	Reportable, 20% difference
9 – 10	Every patient	Almost impossible	Reportable, injury / death

Risk probability number (RPN):

- Multiply three scores – Probability x detectability x severity
- Example misalignment of CBCT iso
- Probability = 1
- Likelihood of detection = 6
- Severity = 10
- RPN = $1 \ge 6 \ge 10 = 60$

Results:

- Choose the highest RPN's and change clinical practice
- Law of diminishing returns

Results, UC Davis:

- Change in practice / planning technique
 - Prior to FMEA couch translations were required to fold imaging panels
 - Risk of invalidating CBCT alignment

Results, UC Davis:

- Change in practice / planning technique
 - After FMEA we devised a method of planning and rotating the couch to reduce this risk
 - Lower RPN
 - No couch translations after CBCT correction

Laser marking after CBCT shift is final and checked when couch is rotated for non coplanar beams

Results, UC Davis:

- Safety measures
 - Checklist and surgical timeout
 - MD sign off on CBCT
 - Therapist sign off on
 - Patient identity
 - CBCT shifts

Conclusion:

- FMEA is time consuming and human resource intensive
 - -100 man hours
- Valuable exercise
 - Change in technique
 - Unified protocol
 - Safety conscious

Conclusion:

- FMEA process is generic but the results are somewhat clinic specific
 - Specific to equipment
 - Workload

Take home message

- Highly effective ablative doses
- Continuously evolving field
 - IMRT and VMAT delivery methods already common
 - Single fraction treatments
 - 4D CBCT

