Cartesian Methods for Rapid Time-Resolved MR Angiography

Stephen J. Riederer, Ph.D. MR Laboratory Mayo Clinic Rochester, MN 55905 USA

Advanced Angiographic Imaging Techniques AAPM Meeting Monday, July 30, 2012

Disclosure

- Multiple technologies presented have been licensed by the authors to MRI vendors:
 - General Electric Healthcare
 - Siemens
 - Philips
 - Hitachi
 - Toshiba

Focus

- This talk will focus on imaging the temporal passage of contrast-enhanced blood through the vascular system.
- "Time-resolved" MRA w/o contrast agents is also possible; e.g.
 - tag spins evolve measure for applications in stroke and perfusion

Objectives

- Give a sense of the progressive improvement in CE-MRA over the last decade.
- Give an overview of contemporary applications of time-resolved CE-MRA

Outline

- Cartesian Sampling
- Temporal vs. Spatial Resolution
- View Sharing
- Parallel Acquisition
- Image Quality in Time-Resolved MRA
- Applications and Examples

MR Sampling

- MRI raw data sample the Fourier space or "k-space" of the final image.
- The x, y, z gradient waveforms control the k-space sampling trajectory
- The time sampling controls the spacing between k-space points

3DFT Pulse Sequence Acquisition Times				
	Y x Z: 64 x 16	96 x 32	128 x 48	
TR: 10 msec	10 sec	30	61	
7 msec	7	21	43	
4 msec 4		12	25	

3DFT Pulse Sequence Acquisition Times				
*				
	5 mm x 10 mm	3.8 mm x 5 mm	2.5 mm x 3 mm	
TR: 10 msec	10 sec	30	61	
7 msec	7	21	43	
4 msec	4	12	25	
*approximate axial spatial resolution for CE-MRA of calves				

	3DFT Pulse Sequence Acquisition Times					
		* 5 mm x 10 mm	3.8 mm x 5 mm	2.5 mm x 3 mm		
		Y x Z: 64 x 16	96 x 32	128 x 48		
	TR: 10 mse	c 10 sec	30	61		
	7 mse	c (7)	21	43		
	4 mse	4	12	25		
	*approximate axial spatial resolution for CE-MRA of calves					
	Tradeoff: temporal vs. spatial resolution Six 7 sec images with limited spatial resolution or one 43 sec image with good spatial resolution					

View Sharing

- Continuous cyclical sampling of k-space
 using some view ordering
- Reconstruct a full image after only partial replacement of the k-space data
- Image update rate is higher than intrinsic full sampling rate
- Potential to sample central k-space more frequently than periphery for improved time resolution
- Successive images in sequence are correlated.

Riederer, MRM, 1988

Parallel Acquisition

- Use redundant information from multiple coil elements to reduce scan time.
- Original images are artifactual superpositions of signals from multiple pixels across the imaging field of view.
- Need to mathematically account for the superposition . . . can do this algebraically.

Pruessmann, MRM, 1997

3DFT Acquisition 2D Parallel Imaging • Perform parallel acquisition along two phase encode directions • Assumes that 3D acquisition with large volume coverage is desirable

Fidelity of Image of Contrast Bolus

- All MR sequences have a finite (non-zero) acquisition time.
- Consequently, an image of the contrast bolus at some time deviates from reality.
- Ideally a time-resolved MRA sequence:
 - Accurately portrays bolus edge position
 - Provides minimal blur of the bolus edge
 - Accurately portrays bolus velocity
 - Has negligible artifact

Applications to Cardiovascular System

CE-MRA using accelerated, view-shared Cartesian techniques has been applied to multiple vascular regions

Critical to effective implementation are highperformance multielement receiver coils

Clinical Study of Calf Vessels

Patient

- 65 year old woman with a left femoral-popliteal artery bypass in 1998
- Referred for assessment of critical ischemia and a non-healing ulcer
- Sampling Parameters standard calf
 - 1 mm³ spatial resolution
 - 4.9 sec frame time
 - 19.6 sec temporal footprint

Patient Study of the Hands

Time-of-Arrival Mapping

- Time-of-Arrival Map
 - Produced from CAPR images from preceding slide
 - Scale at bottom matches color to arrival time; each hash mark is one frame time (4.5 sec); start of color scale is 24 sec post-injection
 - Note obvious TOA differences between L and R hands.

Ongoing Coil Development

Fixed-width 40cm long; N_c = 16 element array; angled medial anterior and posterior elements

12x 2D SENSE; 1.8x PF; RNET=21.6; FOV: 42cm x 33.6cm x 13.2cm; 3.5sec updates, 1mm³ voxels

ФР млю

Peripheral (Long FOV) CE-MRA

- Fundamental challenge:
 - Stay at an axial level long enough to acquire enough data for high spatial resolution
 - Keep station dwell time short enough to keep pace with advancing contrast bolus
- · All methods are subject to this tradeoff
- Approaches
 - Reduce spatial resolution at proximal stations
 - Continuous table motion to eliminate dead time
 - Hybrid dual injection methods
 - Parallel acquisition

Fluoroscopic Tracking

- Method for multi-station peripheral CE-MRA
- Image proximal stations in real time
 - <u>High spatial resolution</u> for diagnosis (1.0 1.5 mm iso)
 - <u>High temporal resolution</u> to observe bolus arrival and traversal across FOV (2.5 sec frame time)
- Allow longer frame time at distal-most station for higher quality

System Components

- High spatiotemporal resolution is allowed with 2D acceleration (R≥8)
- Technical enabler: multi-element coils with circumferential placement

Summary

- 1. Contrast-enhanced MRA has markedly improved in the last decade.
- 2. View sharing and parallel acquisition are routinely used in contemporary time-resolved CE-MRA.
- 3. Parallel acquisition readily allows a 10× reduction in the amount of data necessary to form a single image.

Summary

- 4. For accurate depiction of a time-varying phenomenon the MRI sequence should
 - have consistent frame-to-frame sampling
 have compact sampling of central k-space
 benefit from acceleration methods
 Cartesian sampling readily allows these.
- 5. Synergistic combination of the techniques presented with compressive sensing and related methods may provide further advances.

Acknowledgments

Staff Collaborators Norbert G. Campeau, MD Joel P. Felmlee, PhD James F. Glockner, MD, PhD John Huston III, MD Michael K. McKusick, M.D. Phillip M. Young, MD

> Lab Staff Eric A. Borisch Roger C. Grimm Mary C. Goltz Thomas C. Hulshizer Christine C. La Plante Phillip J. Rossman

Past / Present Students Clifton R. Haider, PhD Harry Hu, PhD Petrice M. Mostardi, PhD Ek Tsoon Tan, PhD Casey P. Johnson, PhD Thomas W. Polley Eric G. Stinson Paul T. Weavers

Acknowledgments

- NIH C06 RR018898
- NIH R01 HL070620
- NIH R01 EB000212
- General Electric Healthcare

Fluoroscopic Tracking: What Is It?

- Method for multi-station CE-MRA
- Image proximal stations in real time
 - <u>High spatial resolution</u> for diagnosis
 - <u>High temporal resolution</u> to observe bolus arrival and traversal across FOV
 - <u>Short dwell time</u> to keep pace with advancing contrast bolus
 - <u>Short reconstruction time</u> to allow real-time triggering of table advance to next station
- Allow longer frame time at distal-most station for higher quality

Fluoroscopic Tracking: **Potential Advantages**

- High spatiotemporal resolution over an extended FOV
- Single injection of contrast material
- Accurate, reliable, and patient-specific timing of table motion to advancing contrast bolus
- Routine avoidance of venous contamination
- Relatively simple and short exam protocol

Courtesy Casey Johnson

Fluoroscopic Tracking: Technical Challenges

- Method for multi-station CE-MRA
- Image proximal stations in real time

 - High spatial resolution for diagnosis sub-1.0 to 1.5 mm isotropic resolution
 High temporal resolution to observe bolus arrival and traversal across FOV frame time ≤ 2.5 sec
- frame time ≤ 2.5 sec
 Short dwell time to keep pace with advancing contrast bolus temporal footprint ≤ 15 sec
 Short reconstruction time to allow real-time triggering of table advance to next station recon time << 2.5 sec frame time
 Allow longer frame time at distal-most station for higher quality

Imaging Parameters				
Typical values from literature	Abdomen-Pelvis	Thighs	Calves-Feet	
FOV (cm: S/I × L/R × A/P)	42 × 42 × 14.4	42 × 42 × 13.2	42 × 33.6 × 13.2	
Sampling Matrix (S/I × L/R × A/P)	280 × 280 × 96	280 × 280 × 96 280 × 280 × 88		
Resolution (mm: S/I × L/R × A/P)	1.5 × 1.5 × 1.5	1.5 × 1.5 × 1.5	1.0 × 1.0 × 1.0	
Flip Angle (°)	30 1.6-1.9 isotr	9 mm opic 30	30	
Bandwidth (kHz)	±62.5	±62.5	±62.5	
TR / TE (ms)	4.7 / 2.0	4.7 / 2.0	6.0 / 2.7	
Receiver Coils	12-14	10	8	
View Sharing Sequence	N3 CAPR	N3 CAPR	N4 CAPR	
2D SENSE Acceleration (L/R × A/P)	R=8 (4×2) R=3	R=8 (4×2)	R=4 R=8 (4×2)	
2D Partial Fourier Acceleration	1.9	1.9	1.8	
Frame Time (sec)	2.5	2.5	5.2	
Temporal Footprint (sec)	6.9 8-20	sec 6.6	20-60 sec 18.6	
To date: 8 healthy volunteers; 7 patients with CTA comparisons				

System Components

 32-channel modular receiver coil array

 • Actively switched for each station

 • 82 D SENSE at each station

 • 122 cm longitudinal coverage

- Real-time reconstruction using custom hardware and software ~110ms recon time
- 3T GE MR750 (v22)

 Flexible station-specific imaging parameters

Parallel Acquisition

- The above example described parallel acquisition along one phase encode direction with an acceleration of R = 2.
- This allows 2x reduction of T_{ACQ}.
- In MRI in general accelerations of R = 2 3 are possible.
- This is balanced by loss of SNR

Parallel Imaging: Potential for High Acceleration Factors

- R = acceleration factor, factor by which data for the underlying image is reduced.
- For R > 3 along a single direction, SENSE inversion becomes poorly conditioned; "g-factor" grows
- Although possible, are larger R values practical?

Parallel Acquisition

- $\begin{array}{ll} \bullet \ T_{ACQ} \ = \ N_{Y} \cdot TR & \text{single slice} \\ T_{ACQ} \ = \ N_{Y} \cdot N_{Z} \cdot TR & \text{3D volume} \end{array}$
- Is there some way to reduce scan time?
- 1990s: extensive development of receiver coils. Perhaps this be further used?

From CAPR to CAPR with 2D SENSE

Background

- Mid-1990s: development of basic contrastenhanced MR angiography (CE-MRA)
- Late-1990s: technical optimization for generation of high quality, single phase images
- Fundamental tradeoff: temporal vs. spatial resolution
- 2000-2010: developments in acceleration (10x) have radically changed this tradeoff.
- Time-resolved CE-MRA is possible today with superior spatial resolution to single phase CE-MRA a decade ago.