Iterative Reconstruction Methods in Computed Tomography

J. Webster Stayman
Dept. of Biomedical Engineering, Johns Hopkins University

Power of Iterative Reconstruction

FBP reconstruction
Iterative Reconstruction

0.8 mAs/frame
0.1 mAs/frame

(80 kVp, 360 projections)

Learning Objectives

- Fundamentals of iterative methods
 - Approach to forming an iterative algorithm
 - Identify particular classes of methods
- Advantages of iterative approaches
 - Intuition behind what these algorithms do
 - Flexibility of these techniques
- Images produced by iterative methods
 - Differences from traditional reconstruction
 - Image properties associated with iterative reconstruction
Iterative Reconstruction

- What is iterative reconstruction?
 - Requires a data model
 - Enforce desirable image properties
 - Encourage smoothness, edges, etc.
 - Need a measure of "better"

- How can we make the image better?
 - Get a better match to the data
 - Enforce desirable image properties
 - Encourage smoothness, edges, etc.
 - Need a measure of "better"

Building an Iterative Technique

- Define the objective
 - Find the volume that best fits the data and desired image quality

 \[
 \text{volume} = \arg \max \{ \text{data}, \text{model} \} \& \text{image properties} \}

 \[
 \hat{\mu} = \arg \max \| \mathbf{y} - \mathbf{y}(\mu) \| \}

- Devise an algorithm that solves the objective
 - Iteratively solve for \(\hat{\mu} \)
 - Decide when to stop iterating (and how to start)

Reconstruction Choices

- Forward Model Driven
- Regularized ART
- PICCS
- Image Properties
- Image Restoration
- Maximum Likelihood
- Penalized Likelihood
- MAP
- PWLS
- Veo SAFIRE
- ASIR AIDR
- Image Denoising

Disclaimer: The exact details of commercially available reconstruction methods are not known by the author.
Model-based Approaches

- Transmission Tomography Forward Model
 - Projection Physics, Beer’s Law
 \[P(\text{photon survives}) = \exp\left(-\int \bar{\mu}(x,y) \, dl \right) \]
 \[\bar{y}_j = \lambda \{\text{number of photons} \} = l_0 \exp\left(-\int \bar{\mu}(x,y) \, dl \right) \]
- Need a Parameterization of \(\bar{\mu} \)

Parameterization of the Object

- Continuous-domain object
- Want finite number of parameters
- Choices of basis functions:
 - Point Samples - Bandlimited
 - Contours – Piecewise constant
 - Blobs, Wavelets, “Natural Pixels,” ...
- Voxel Basis

\[\bar{\mu} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \end{bmatrix} \]

\[\bar{\mu}(x,y) \equiv \mathbf{B}\bar{\mu} \]

Projection

- Linear operation
 \[\bar{\gamma}_j = l_0 \exp\left(-\int \bar{\mu}(x,y) \, dl \right) \]
- Discrete-Discrete for parameterized problem
 \[\bar{\gamma}_j = l_0 \exp\left(-\sum_{i=1}^{p} a_{ij}\bar{\mu}_i \right) \]
- System matrix

\[\mathbf{A} = \begin{bmatrix} a_{11} & \cdots & a_{1p} \\ \vdots & \ddots & \vdots \\ a_{p1} & \cdots & a_{pp} \end{bmatrix} \]
Forward Model
- Mean measurements as a function of parameters
 \[y(\mu) = I_0 \exp(-A\mu) \]

\[\begin{array}{ccc}
\mu & A\mu & I_0 \exp(-A\mu) \\
\end{array} \]

Aside: Backprojection
- Projection
- Backprojection

A Simple Model-Driven Approach
- Forward Model
 \[\tilde{y}(\mu) = I_0 \exp(-A\mu) \]
- Objective and Estimator
 \[\hat{\mu} = \arg\min \| y - \tilde{y}(\mu) \| \quad \hat{\mu} = \arg\min -\log \left(\frac{y}{I_0} \right) + A\mu \]
 \[\hat{\mu} = \arg\min \| A\mu - \vec{l} \| = \left[A^T A \right]^{-1} A^T \vec{l} \]
 \[\begin{array}{ccc}
\text{Projection-Backprojection} & \text{Backprojection} \\
\end{array} \]
- For a squared-distance metric:
 - Many possible algorithms
 - Can be equivalent to ART, which seeks \(A\mu = \vec{l} \)
Flexibility of Iterative Methods

\[\hat{\mu} = \arg \min |A\mu - l| = [A^T A]^{-1} A^T l \]

- For a well-sampled, parallel beam case:
 \[A^T A \approx \frac{1}{r} \rightarrow [A^T A]^{-1} x = F^{-1} [\phi] + x \]

- For other cases:
 \[[A^T A]^{-1} A^T l \]

- Iterative methods implicitly handle the geometry
 - Find the correct inversion for the specific geometry
 - Cannot overcome data nullspaces (needs complete data)

More Complete Forward Models

- More physics
 - Polyenergetic beam, energy-dependent attenuation
 - Detector effects, finite size elements, blur
 - Source effects, finite size element
 - Scattered radiation
- Noise
 - Data statistics
 - Quantum noise = x-ray photons
 - Detector Noise

Toy Problem

3 Random Variables
Different std dev (\(\sigma_1, \sigma_2, \sigma_3 \))

Best way to estimate \(\mu \)!?
Maximum Likelihood Estimation

- Find the parameter values most likely to be responsible for the observed measurements.

- Properties
 - Asymptotically unbiased and efficient under general conditions

- Likelihood Function
 \[L(y; \mu) = p(y_1, y_2, \ldots, y_N | \mu_1, \mu_2, \ldots, \mu_N) \]

- Maximum Likelihood Objective Function
 \[\hat{\mu} = \arg \max L(y; \mu) \]

ML Estimate for the Toy Problem

Likelihood function:

\[L(y, \mu) = p(y | \mu) = \prod_{i=1}^{N} p(y_i | \mu) \]

\[p(y_i | \mu) = \frac{1}{\sqrt{2\pi} \sigma_i} \exp \left\{ -\frac{1}{2} \left[\frac{y_i - \mu}{\sigma_i} \right]^2 \right\} \]

Log-Likelihood function:

\[\log L(y, \mu) = -\frac{1}{2} \sum_{i=1}^{N} \log(2\pi\sigma_i^2) - \sum_{i=1}^{N} \frac{1}{2} \left(\frac{y_i - \mu}{\sigma_i} \right)^2 \]

Maximize over \(\mu \):

\[\hat{\mu} = \arg \max \log L(y, \mu) \]

\[\frac{\partial}{\partial \mu} \log L(y, \mu) = \sum_{i=1}^{N} \frac{y_i - \mu}{\sigma_i^2} \]

ML for Tomography

- Need a noise model
- Depends on the statistics of the measurements
- Depends on the detection process

- Common choices:
 - Poisson - x-ray photon statistics
 \[y_i \sim \text{Poisson}(\mu_i) \]
 \[p(y_i | \mu_i) = \frac{e^{-\mu_i} \mu_i^{y_i}}{y_i!} \]
 - Poisson-Gaussian mixtures - photons + readout noise
 \[y_i \sim \text{Poisson}(\mu_i) + \mathcal{N}(0, \sigma_i^2) \]
 - Gaussian (variable variances) - approx. many effects
 \[y_i \sim \mathcal{N}(\mu_i, \sigma_i^2) \]
 \[p(y_i | \mu_i, \sigma_i^2) = \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp \left\{ -\frac{1}{2} \frac{(y_i - \mu_i)^2}{\sigma_i^2} \right\} \]
Poisson Likelihood Function

- Marginal Likelihoods
 \[p(y_i | \mu) = \exp(-y_i \mu) \frac{[\lambda(\mu)]^{y_i}}{y_i!} \]
- Likelihood
 \[L(y; \mu) = \prod_{i=1}^{n} p(y_i | \mu) = \prod_{i=1}^{n} \exp(-y_i \mu) \frac{[\lambda(\mu)]^{y_i}}{y_i!} \]
- Log-Likelihood
 \[\log L(y; \mu) = \sum_{i=1}^{n} y_i \log \lambda(\mu) - y_i \mu - \log y_i! \]
- Objective Function
 \[\hat{\mu} = \arg \max \log L(y | \mu) \]

Gaussian Likelihood Function

- Marginal Likelihoods
 \[l_i = -\log \left(\frac{y_i}{\mu} \right) \quad p(l_i | \mu) = \frac{1}{\sqrt{2\pi}} \exp \left[-\frac{1}{2\mu} (l_i - \mu)^2 \right] \]
- Likelihood
 \[L(l; \mu) = p(l | \mu) = \prod_{i=1}^{n} p(l_i | \mu) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} \exp \left[-\frac{1}{2\mu} (l_i - \mu)^2 \right] \]
- Log-Likelihood
 \[\log L(l; \mu) = \sum_{i=1}^{n} \left(-\frac{1}{2\mu} (l_i - \mu)^2 \right) \]
- Objective Function and Estimator
 \[\hat{\mu} = \arg \max \log L(l | \mu) = \left[(X^T X)^{-1} X^T \right] l \]

Iterative Algorithms

- Plethora of iterative approaches
 - Expectation-Maximization – General Purpose Methodology
 - Gradient-based Methods – Coordinate Ascent/Descent
 - Optimization Transfer – Paraboloidal Surrogates
 - Ordered-Subsets methods
- Properties of iterative algorithms
 - Monotonicity
 - True convergence
 - Speed
 - Complexity
Statistical Reconstruction Example

- **Test Case**
 - Single slice x-ray transmission problem
 - 512 x 512 0.3 mm volume
 - 400 detector bins over 180 angles (360 degrees)
 - Poisson noise: 1e5 counts per 0.5 mm detector element
 - SO: 380 mm, DO: 220 mm

- **Reconstruction**
 - Voxel basis: 512 x 512 0.3 mm voxels
 - Maximum-likelihood objective
 - EM-type algorithm
 - Initial image – constant value
 - Lots of iterations

ML-EM Iterations

FBP vs ML-EM Comparison
Enforcing Desirable Properties

- FBP
 - Filter designs – cutoff frequencies
- Iterative methods
 - Modify the objective to penalize “bad” images
 - Discourage noise
 - Preserve desirable image features
 - Other prior knowledge

Image-domain Denoising:
\[\hat{\mu} = \arg \max \mathcal{F}(\mu) - \beta R(\mu) \]

Modal-based Reconstruction:
\[\hat{\mu} = \arg \max \mathcal{F}(y, \mu) - \beta R(\mu) \]

Local Control of Image Properties

- Pairwise Penalty
 - Penalize the difference between neighboring voxels
 \[R(\mu) = \sum_{j \in \mathcal{N}} w_j \psi(\mu_j - \mu_k) \]
 \[k_{4x4} = \begin{bmatrix} -1 & -1 & -1 & -1 \\ -1 & 1 & 1 & -1 \\ -1 & 1 & 1 & -1 \\ -1 & -1 & -1 & 1 \end{bmatrix} \]

- Quadratic Penalty
 \[R(\mu) = \sum_{j \in \mathcal{N}} w_j (\mu_j - \mu_k)^2 \]

Penalized-Likelihood Example

- Forward Model
 - Fan-beam Transmission Tomography
 - 512 x 512 0.3 mm volume
 - 400 detector bins over 180 angles (360 degrees)
 - Poisson: \{1e4, 1e3\} counts per 0.5 mm detector element
 - SO: 380 mm, DO: 220 mm

- Objective Function
 - Poisson Likelihood
 - Quadratic, first-order Penalty

- Algorithm
 - Separable Paraboloidal Surrogates
 - 400 iterations – well-converged
Other Penalties/Energy Functions

\[R(\mu) = \sum \sum w_{jk} \phi(\mu_j - \mu_k) \]

- Quadratic penalty
 - Tends to enforce smoothness throughout image
 - Increasingly penalizes larger pixel differences

- Non-quadratic penalties
 - Attempt to preserve edges in the image
 - Once pixel differences become large allow for decreased penalty (perhaps a relative decrease)

- Flexibility: Even more penalties
 - Wavelets and other bases, non-local means, etc.
Nonquadratic Penalties

- **Choices**
 - Truncated Quadratic
 \[\psi(t; \delta) = |t|_{\delta} \]
 - Lange Penalty
 \[\psi(t; \delta) = \delta \left[\frac{1}{\delta} \log(1 + |t|) \right] \]
 - P-Norm
 \[\psi(t; p) = |t|^p \]

Truncated Quadratic

Lange

P-Norm

Test Case
- Single slice x-ray transmission problem
- 480 x 480 0.8 mm volume
- 1000 detector bins over 360 angles (360 degrees)
- Poisson noise: 1e5 counts / 0.76 mm detector element
- SO: 600 mm, DO: 600 mm

Reconstruction
- Penalized-likelihood objective
- Shift-Invariant Quadratic Penalty
- Separable paraboloidal surrogates
- 200 iterations
- Voxel basis: 480 x 480 0.8 mm voxels

Closer Look at Image Properties

- **Test Case**
 - Single slice x-ray transmission problem
 - 480 x 480 0.8 mm volume
 - 1000 detector bins over 360 angles (360 degrees)
 - Poisson noise: 1e5 counts / 0.76 mm detector element
 - SO: 600 mm, DO: 600 mm

- **Reconstruction**
 - Penalized-likelihood objective
 - Shift-Invariant Quadratic Penalty
 - Separable paraboloidal surrogates
 - 200 iterations
 - Voxel basis: 480 x 480 0.8 mm voxels
FBP vs PL, Noise Properties

- Noise in FBP
 - Shift-variant variance
 - Shift-variant covariance

- Noise in Quadratic PL
 - Relatively shift-invariant variance (in object)
 - Shift-variant covariance

FBP vs PL, Resolution Properties

- Filtered-Backprojection
 - Largely shift-invariant spatial resolution
 - Shift-variant, object-dependent noise

- Uniform Quadratic Penalized Likelihood
 - Shift-variant, object-dependent spatial resolution
 - Shift-variant, object-dependent noise

- Edge-preserving Penalty Methods
 - Shift-variant, object-dependent spatial resolution
 - Shift-variant, object-dependent noise
 - Noise-resolution properties may not even be locally smooth

Image Properties
Learning Objectives I

- Fundamentals of iterative methods
 - Approach to forming an iterative algorithm
 - Forward Model
 - Objective Function
 - Optimization Algorithm
 - Identify particular classes of methods
 - Model-based vs. Image Denoising approaches
 - Statistical vs. Nonstatistical approaches
 - Kinds of regularization

Learning Objectives II

- Advantages of iterative approaches
 - Intuition behind what these algorithms do
 - Fitting reconstruction to observations
 - Data weighting by information content
 - Importance of regularization
 - Flexibility of these techniques
 - Arbitrary geometries
 - Sophisticated modeling of physics
 - General incorporation of desired image properties through regularization

Learning Objectives III

- Images produced by iterative methods
 - Differences from traditional reconstruction
 - Regularization is key
 - Image properties are tied to statistical weighting
 - Can depend on algorithm when iterative solution has not yet converged
 - Image properties associated with iterative reconstruction
 - Highly dependent on regularization
 - Can be more shift-variant (edge-preservation)
 - Different noise, artifacts
Thank You