

for Using CAD Systems Ronald M. Summers, M.D., Ph.D.

Senior Investigator

Imaging Biomarkers and Computer-Aided Diagnosis Laboratory Radiology and Imaging Sciences NIH Clinical Center Bethesda, MD

Financial Disclosure

- Patent royalties and CRADA support from iCAD Medical, Inc.
- License fees from Translational Sciences
 Corporation

Disclaimer

 Opinions expressed herein are not necessarily those of HHS or NIH

Group 4 Members

- Matthew Friedman, Georgetown Univ.
- Jesse Lin, FUJIFILM Medical Systems
- Ben Shih-Chung Lo, Georgetown Univ.
- Julian Marshall, Hologic, Inc.
- Pat Milbank
- Stephen Vastagh, MITA
- Samuel G. Armato III, University of Chicago
- Heang-Ping Chan, University of Michigan
- Berkman Sahiner, CDRH, FDANicholas Petrick, CDRH, FDA

Learning Objectives

- Understand benefits of PACS integration of CAD.
- Identify potential issues with off-label use of CAD.
- Understand the importance of user training relating to CAD devices.
- Learn about areas of CAD user training and QA that could benefit from further research.

What is the Problem We are Trying to Address?

- Improvement in radiologist performance with CAD is poor, even when the CAD performs well in the lab
- Examples from the recent literature:
 - Fenton et al.
 - Dachman et al.

The Problem

- 684 956 women who received more than 1.6 million film-screen mammograms
- "CAD use ... is associated with decreased specificity but not with improvement in the detection rate ... of invasive breast cancer"
- CAD led to increased detection of DCIS
- Were radiologists using CAD as a crutch & not reviewing the mammograms as diligently?

Fenton et al., JNCI 2011

The Problem

- 100 CTC cases, 19 radiologist readers
- CAD sensitivity in the lab: 91.8%
- Sensitivity of the radiologists without and with CAD: 46.6%, 52.1%

Overview

- To achieve the highest possible benefit from CAD systems, best practices are required for clinical implementation and use of CAD
- Summary of opinions of the AAPM CAD Subcommittee

CAD best practices – Important issues

- Importance of training in the use of CAD devices
- Pitfalls of off-label use
- Research opportunities

Rationale for CAD

- Reduce interobserver variability
 - Level the playing field
 - Less trained can perform closer to experts
- Reduce perceptual error
 - Find abnormalities missed by radiologists
 - Improve reproducibility

User training - Topics

- Importance of understanding the effect of improper use of CAD on sensitivity and specificity
- Frequency and type of training
- Training the vendors: Feedback on CAD performance
- Storing CAD marks long term for training/auditing purposes

CAD best practices - User training

- Training is important for reading images without CAD:
- Residencies, fellowships, special certifications
- Inexperienced readers benefit more from CAD
- Training for reading images with CAD
 - Little published research
- Educate the physicians on the intended use of the CAD

CAD User training - It Helps!

- Mammography CAD in the United Kingdom National Breast Screening Program
 - FJ Gilbert et al., Radiology 2006
 - CADET II Trial, FJ Gilbert et al., NEJM 2008

CAD User training

- 2 month training of radiologists
 - Initial training by vendor
 - Practice using 6 sets of 75-100 cases
 - Truth provide after each set to improve performance
 - Cancer prevalence progressively reduced from 25% to 5%
- Results
 - Single reader with CAD had comparable sensitivity to double reading without CAD

CAD User training - Other Results

- Short-term feedback may not help
 - Lung nodules on CXR with CAD, De Boo *et al.*, Eur Radiol 2012
- Focused training with CAD may reduce training requirements
 - Polyps on CTC,
 - Taylor *et al.*, Br J Radiol 2008

Training Occurs During CAD Use

- Learning curve for radiologist use of CAD changes over the course of a year
- Breast radiologists initially doubled their recall rate when using CAD (6.2% to 13.4%), but over a year, the recall rate decreased to near the level before CAD implementation (6.75%)
 - Dean and Ilvento AJR 2006

User training - Important Questions

- How can we encourage radiologists to spend time getting trained?
- Does the absence of training impair CAD performance in the clinic?
- Is there an association between radiologist performance and attitudes towards CAD before and after training?

User training – What?

- Sensitivity and average false positives per image
- Characteristics of false negatives and false positives (knowledge of latter benefits efficiency)

User training – What?

- Unique strengths and weaknesses of a particular CAD (target lesions; susceptibility to artifacts)
- Meaning of the various CAD marks
- Absence of CAD mark should not discourage recall
- Learning curve for use of CAD in actual clinical use

User training – When?

- At initial installation
- Annually or via CME
- At time of CAD updates or modifications
- During residency (currently implemented for breast imaging rotations under ACR guidelines)

User training – How?

- Web-based
- One-on-one
- Case-based

User training – Implementation

- Case-based examples of changes in CAD behavior after updates or modifications
- Technologist training, especially if radiation dose or patient positioning affect CAD

Training the CAD Vendor

- Continuous feedback about missed lesions, false positives
- Recording callbacks that have no CAD marks, CAD marks that cause additional callbacks, recalling CAD marks on prior exams when current exam is being read

Storing CAD Marks

- Controversial
- Medicolegal aspects have been emphasized, patient benefits have not
- CAD has been used in the courtroom and has helped defendant radiologists
 - Brenner *et al.*, AJR 2006

Storing CAD Marks - Benefits

- Facilitate automatic monitoring of the stability of the CAD system performance over time
- Help the radiologist learn the characteristics of dismissed CAD marks on prior exams that turn out to be true lesions in current exams
- Enable CAD system to use previous readings to improve its current performance
- Enables CAD prospective performance evaluation in large populations

Storing CAD Marks - Implementation

- Some CAD operates on raw data or processed images not shown to the radiologist
- Example: ultrathin CT images for CTC
- Such raw data would also need to be stored along with CAD marks
- Record CAD metadata in DICOM header or using Annotation Imaging Markup (AIM)

Off-label Use

- Use of device in a manner that is not specifically stated in the FDA-approved indications for use
- Physicians may use any FDA-approved product off-label according to their professional judgment concerning the needs of their patients
- Potential problem: CAD used off-label to improve productivity rather than sensitivity
- Second reader > Concurrent reader > First reader

Off-label Use

 CAD should be used on ALL cases, not just selected ones, since radiologist cannot know in advance which cases will be false negatives without CAD

Colon Cancer in Americans

- 2nd leading cause of cancer death
- 131,000 diagnosed annually
- 55,000 annual mortality
- 6% will develop colon cancer during their lifetime (40% die)

Image source: Wikipedia

1.4 cm polyp in transverse colon found by CAD

Reading Paradigm

- First read
- Concurrent read
- Second read

First Read

- Radiologist reviews only CAD results, not entire colon
- Fast interpretation time
- High specificity
- Lower sensitivity
- Presently unlikely to be used clinically
- Sometimes used for mammography CAD (microcalcifications)

Concurrent Read

- CAD marks visible during radiologist's primary image interpretation
- Radiologist evaluates CAD marks as they appear in the image

Concurrent Read

- Reduced interpretation time
- CAD marks may distract radiologist from other findings in vicinity ("satisfaction of search" error)

2nd Reader

- Radiologist reviews images and arrives at preliminary diagnosis
- Then evaluates CAD marks, revises preliminary diagnosis to arrive at final diagnosis
- Used for mammography CAD (masses)

2nd Reader

- Highest sensitivity (↑ 9 25%)
- Lowest specificity (\downarrow 2 14%)
- Longest interpretation times (1 2 4 min.)

CAD as 2nd Reader

7 mm TA in rectum found by 3 readers with CAD N. Petrick et al., Radiology 2008

Discouraging Off-label Use

- Hard to see how off-label use of CAD benefits patients rather than physicians
- Record or track reading behavior
- Record radiologist's findings prior to displaying CAD output (auditing; RIS integration of CAD)
- Control the workflow by modifying the display protocols (requires PACS integration of CAD)

PACS Integration of CAD

- Improves usability
- Increases reader sensitivity with minimal impact on interpretation time
 - Lung nodule study,
 - Bogoni *et al.* J Digital Imaging 2012
- Integration hampered by deficiencies in IHE
 - Welter *et al.* Comput Methods Programs Biomed. 2011
 - Le et al. IJCARS 2009

Standardization

- File formats and reported data elements
- APIs for PACS/RIS integration of CAD
- · Quality control
- Reporting
- Limited to encourage buy-in from vendor community

CAD best practices – Research opportunities

- Assessment of radiologist performance and training methods
- Monitoring CAD performance changes and effectiveness over time using large electronic health records
- Funding opportunities

Research opportunities - Training

- Number of cases
- Generalizability: local or global cases
- Re-training requirements
- Overcalls, recall rates, FNs, FPs, efficiency, subtle lesions, pitfalls, radiation exposure
- Patient preparation and acquisition-specific issues
- · Reading paradigms
- Content-based image retrieval

Research opportunities

- Effect of CAD marks (shape, type) on performance
- Human perception research
- Estimating the likelihood of malignancy of a lesion
- Automated lesion size measurement and segmentation

Distributed human intelligence for observer performance assessments

Future Directions

- CAD keeps improving
- Reimbursements on downward trend
- Physician extenders will increasingly provide care
- First-read paradigm will ultimately prevail
- Satisfaction of search errors (i.e., the Fenton paper) could become more prevalent

Conclusions

- Use of best practices optimizes benefit of CAD
- Areas of improvement to be had in training users, discouraging off-label use
- Consensus from members of the CAD community
- Has to be done in a way that is not punitive ...
- ... but that keeps a sharp focus on benefiting the patient

To Learn More ...

www.cc.nih.gov/drd/summers.html

Acknowledgment: Viatronix provided V3D visualization software