Non-Contrast-Enhanced (NCE) MR Angiography – Methods for Assessment of Morphology and Flow

Oliver Wieben
Dept. of Medical Physics & Radiology
University of Wisconsin - Madison

Declaration of Relevant Financial Interests or Relationships
Speaker Name: Oliver Wieben

I have the following relevant financial interest or relationship to disclose with regard to the subject matter of this presentation:

Company name: GE Healthcare
Type of relationship: Research Support

Outline
Motivation for Noncontrast-Enhanced (NCE)-MRA
NCE MRA Acquisition Methods
- Time-of-Flight (TOF)
- balanced SSFP
 - MRA
 - Arterial spin-labeling (ASL)
- Phase Contrast (PC)
 - MRA
 - 4D PC MR - Hemodynamics
- Fast Spin Echo (FSE)
 - Fresh Blood Imaging (FBI)

Summary & Outlook
Contrast-Enhanced (CE)-MRA

Advantages of CE-MRA
- Very high SNR
- Robust, insensitive to artifacts
- Slow flow, susceptibility, etc.
- Well established — clinically proven
- Quantitative perfusion

Disadvantages of CE-MRA
- Bolus Imaging
 - Arterial-venous window
 - Limited scan time for first pass
 - Limited spatial resolution coverage
 - Susceptibility to motion
 - Venous injection: bolus dispersion
 - Use of Gd based contrast agents
 - Cost
- Patients with compromised kidney function
 - Nephrogenic Systemic Fibrosis

Time-resolved CE-MRA

Why NCE-MRA

Advantages of NCE-MRA
- No Gd
 - Cost reduction
 - Reduced subtraction for superb acr (e.g. perfusion)
 - No background enhancement from Gd
 - Provide alternative for patients at risk for NSF
- Extended scan times
 - Navigator/bellows instead of breathholds
 - Aim for higher spatial resolution
 - Additional parameters can be added
- Functional information
 - Arterial Spin Labeling
 - Quantitative Perfusion Imaging
 - PC VIPR
 - Velocity Vector Fields
 - Diffeomorphic Brain Atlas
 - T2* mapping
 - Wall shear stress

Extended scan times
- Navigator/bellows instead of breathholds
- Aim for higher spatial resolution
- Additional parameters can be added
- Functional information
 - Arterial Spin Labeling
 - Quantitative Perfusion Imaging
 - PC VIPR
 - Velocity Vector Fields
 - Diffeomorphic Brain Atlas
 - T2* mapping
 - Wall shear stress

NCE MRA - Progress

Hardware Advances
- Higher field strength (3T+)
 -更高场强
- Faster gradients
- Fast imaging
- Reduced artifacts
 -Reducing flow (e.g. T2*)
- Balanced-SSFP
- Multiple receiver coils

Methodology Advances
- Novel reconstruction approaches
 - Parallel Imaging
 - SENSE, GRAPPA, SMASH, ARC...
 - Reconstrained Reconstruction
 - Compressed Sensing
 - k-t BLAST, RIGR
- Novel contrast mechanisms
 - Balancing contrast
 - Arterial spin labeling
 - Proximal blood (proximal FT)
 - Novel sampling strategies
 - Radial undersampling, spiral trajectories...
TOF – Gradient Echo

2D SPGR – Pulse sequence
- RF
- G_{phoe}
- G_{read}
- $S(t)$

TOF – Contrast Mechanism
- Spoiled Gradient Echo
- Gradient Spoiling
- RF spoiling
- 2D multislice or 3D acquisition
- Signal in steady state
- $S \sim f(\text{TR})$
- Short TR ($\text{TR} < 25\text{ ms}$)
- Signal for moving spins

Signal strength in TOF

- Vessel
- Slice/slab thickness
- Unsaturated spins
- Saturated spins
- $v \times \text{TR}$

TOF with Spatial Saturation
- Superior
- Inferior
Peripheral MRA with 2D TOF

2D TOF at 1.5T
- Multistation exam
- up to 4 slabs
- Magnetization transfer, fat saturation
- ECG gated, 32 views per segment
- TR/TE: 12.7/1.5 ms
- Flip angle: 70 deg
- FOV: 360 (380) x 150 (180) mm²
- Matrix: 256 x 192
- Slice thickness: 3.0 mm
- Slices per slab: ~140-170
- Scan time: 5.7 min
- Acquired resolution: 1.2 x 1.6 x 3 mm²
- Reconstructed resolution: 0.6 x 0.6 x 3 mm²

Cranial MRA with 3D TOF

Intracranial 3D TOF – 38 y female volunteer
- Incidental finding of 2mm posterior-inferior cerebellar artery (PICA) aneurysm

Typical Imaging Protocol
- 3 Tesla, magnetization transfer, flow compensation, fat sat, parallel imaging
- FOV = 22x16.5 cm;
- TR/TE = 24/2.4 ms; flip angle = 20 deg (ramped),
- Scan time = 4:30 min
- Acquired:
 - imaging matrix = 512x224,
 - 3 slabs, 42 slices per slab, 1mm slice thickness
- Reconstructed:
 - spatial resolution: 0.5 x 0.5 x 0.5 mm
 - 192 slices – 9.6 cm coverage

J. Frahm et al., MRM, 1986
from SPGR to bSSFP

\[\int G_x = 0 \]
\[\int G_y = 0 \]
\[\int G_z = 0 \]

A. Oppelt et al., Electromedica, 1986

SPGR vs. bSSFP: cardiac cine

Spoiled Gradient Echo
T₁ weighted

SPGR, FLASH, FFE, ...

balanced SSFP
T₂/T₁ weighted

FIESTA, TrueFISP, bFFE, ...

K. Schelcher et al., Eur Radiol, 2003

bSSFP MRA

- Rapid imaging
- T2-like image contrast
- Bright fluid signal
- Bright blood signal
- High image SNR
- Higher spatial resolution than CE MRA
- Bright vein signal
- Bright lipid signal
- Short TR requirement
- Susceptibility-induced signal drop-out

Thoracic MRA

Coronary MRA

Images courtesy J Carr, Northwestern University, Chicago, IL
bSSFP with inflow spin labeling

Inhance Inflow IR

Typical parameters at 1.5T
- TR/TE: 4.2/2.1 ms
- TI: 1300 ms
- Flip angle: 70°
- Prep Time: 200 ms
- FOV: 360 x 288 mm
- Matrix: 256 x 256
- Resolution: 1.40 x 1.13 mm²
- ST: 2 mm
- Acquisition time: 4:17

Typical parameters at 3.0T
- TR/TE: 5.1/2.5 ms
- TI: 1300 ms
- Flip angle: 70°
- Prep Time: 240 ms
- FOV: 340 x 272 mm²
- Matrix: 256 x 256
- Resolution: 1.32 x 1.06 mm²
- ST: 2 mm
- Acquisition time: 3:18

Inhance Inflow IR at 1.5T

45 year-old male with suspected renovascular hypertension

Trans-stenotic pressure gradient (TSPG) in DSA
- Right common iliac artery > 10 mmHg → angioplasty
- Transplant renal artery < 10 mmHg → no treatment
PCASL Angiography

- **PCASL Tagging**
 - A new endogenous tagging scheme
 - Commonly utilized for MR perfusion
 - Blood that passes through a plane is "tagged"

- **Imaging paradigm**
 - 1-3 s
 - 0.5-1 s

 - **BG1**: Tagging
 - **FAIR**: Acquisition
 - **BG2**: Control
 - **FAIR**: Acquisition
 - **Tag On**
 - **Tag Off**

 - Subtract

Static Imaging

- **Static MRA**
- **Vessel Selective MRA**

 - Courtesy of K. Johnson, University of Wisconsin
Time Resolved PC VIPR

• Adjusting tag duration allows time resolved imaging
• 250 ms frames
• Useful for AVM’s/ bilateral flow

Phase Contrast MR

Clinical Standard
- Single slice, 1-directional velocity encoding, ECG gated
- Velocities encoded in phase difference image ∆φ

Magnitude

Phase Diff. ∆φ

Flow, z

‘4D MR Flow’

Acquisition
- Volumetric coverage
- 3-directional flow encoding: 4 acquisitions
- ECG gating
- Breathing motion

Reduce acquisition times
- View sharing & advanced ref-gating
- Radial undersampling (PC VIPR)
- Hi-BLAST

Kozerke S et al. JMRI 2001
C Baltes et al., MRM 2005
M Markl et al., JMRI 2003
TL Gu et al., AJNR 2005
‘4D MR Flow’

Also referred to as:
- 4D MR Flow (3D Flow)
- Time-resolved 3D PC MR
- Dynamic, volumetric PC MR with three directional velocity encoding

- Magnitude and velocity field inherently coregistered
- 10-25 min scan time
- 15-20 cardiac phases
- Spatial resolution: (1-3 mm)
- Many major advances over the last decade

Also referred to as:
- 4D MR Flow (3D Flow)
- Time-resolved 3D PC MR
- Dynamic, volumetric PC MR with three directional velocity encoding

- Magnitude and velocity field inherently coregistered
- 10-25 min scan time
- 15-20 cardiac phases
- Spatial resolution: (1-3 mm)
- Many major advances over the last decade

‘4D MR Flow’

Vascular Anatomy
- Velocity vector field
- Cardiac gating
- Volumetric Imaging
- Comprehensive information
- Vascular anatomy
- 3D velocity field
- Hemodynamic parameters
- Combination

Post-processing and Visualization
- Flow measurements
- Visualization
- Pressure gradients
- Wall shear stress

MR Angiogram from PC Data

Phase Contrast MR-Angiography
- 3-dir. velocity encoding / non-gated → average flow

Velocity [v]

\[V = \sqrt{V_x^2 + V_y^2 + V_z^2} \]

MRI Data

Anatomy

Magnitude Image

Combination: background suppression

PC-MRA

Use |v| to separate blood & tissue
Normal Volunteer
PC VIPR – Cranial

PC VIPR Parameters
- 3T (GE Healthcare)
- Dual Echo
- FOV: 20 x 20 x 20 cm
- Res: 0.6 x 0.6 x 0.6 mm
- 9000 Projections (36x)
- TR=15.9
- Bandwidth = 31.25
- VENC = 50 cm/s
- 5:07 min Scan Time

Same Cartesian PC
- 48+ min Exam (Partial)

Same TOF
- 24+ min Exam (Partial)

KM Johnson et al.
ISMRM 2006 # 2384, 2958
ISMRM 2007 # 3116

PC VIPR – Sequence Design

A Barger et. al, MRM 2002
TL Gu, AJNR 2005
KM Johnson, MRM 2008

PC VIPR – Renal Artery Stenosis

Intravoxel dephasing - signal void

3D PC – product seq. 2008

CE-MRA
3D PC – product seq. 2008

Much smaller vessels - No dephasing

PC VIPR
DSA
Renal MRA: PC VIPR vs CE-MRA

Study
- 27 subjects
 - 4 healthy volunteers
 - 23 patients
 - 3 patients with native renal arteries
 - 3 patients with kidney transplants

Image quality reviewed by 2 board certified radiologists
- 5 point scale, 221 paired vessel segments

Measure vessel diameter at various locations

Results
- Vessel diameter
- Correlation = 0.960 (Bland-Altman)

Diagnostic Quality (2 readers)
- Proximal Renal Arteries
 - 94% of PC VIPR Vessels
 - 99% of CE MRA Vessels

- Segmental Renal Arteries
 - 96% of PC VIPR Vessels
 - 87% of CE MRA Vessels

Vessel Diameter (mm)

C. Francois et al, Radiology 2011

Abdominal Inhance 3D Velocity

73 year-old male with possible renal transplant artery stenosis

CE MRA

TR/TE: 3.9/1.3 ms
FOV: 350 x 350 mm2
Matrix: 256 x 192
Resolution: 1.37x1.82 mm2
ST: 2 mm
Acquisition time: 0:23

CE MRA

TR/TE: 8.3/3.1 ms
FOV: 380 x 304 mm2
Matrix: 256 x 192
Resolution: 1.48x1.58 mm2
ST: 2 mm
Acquisition time: 6:48
Venc: 50 cm/s

Enhance 3D Velocity
Flow patterns – RV, RVOT, PA

Normal volunteers
- Small vortices beneath TV leaflets
- Flow primarily directed toward RVOT

TOF patients
- Large vortices beneath TV leaflets
- Flow directed toward RV apex in patients with PR

Quantification based on velocity fields
- Wall shear stress
- Pressure difference mapping
- Turbulence & turbulent kinetic energy
- Pulse wave velocity & vessel elasticity
-

Pressure Gradient

Pearson Correlation
\[r = 0.977; \ p < 0.001 \]
95% CI: 0.939-0.991

Swine model – carotid artery stenosis, n=19
Navier-Stokes equation
\[\nabla P = \rho \left(\nabla \times \mathbf{v} \right) + \rho \ddot{\mathbf{v}} + \mu \nabla^2 \mathbf{v} \]

Summary

Established NCE MRA
- TOF
- 3D PC
NCE MRA – up and coming
- balanced SSFP
- 4D MR Flow

Advantages
- No Gd (cost, NSF)
- Information beyond luminography
- Scan times beyond AV window
- Free breathing, ECG gated, patient comfort

Areas to improve
- Large clinical studies
- Demonstrate robustness
- Solid Validation
- Post-processing Workflow
Acknowledgements

Medical Physics
Kevin Johnson
Frank Korosec
Charles Malanta
Alejandro Roldan

Students
Ashley Anderson
Steve Keshamati
Ben Landgraf
Michael Loecher
Liz Nett
Eric Niespodzany
Eric Schrauben
Andrew Wentland

Radiology
Thorsten Bley
Aaron Fields
Chris Francos
Alex Frydrychowicz
Tom Grist
Scott Hagle
Scott Reeder
Howard Rowley
Mark Schiebler
Pat Turski

Slide Contributions
Thorsten Bley, MD
University of Hamburg
Alex Frydrychowicz
University of Luebeck
Michael Markl, PhD
Northwestern University
Mitsue Miyazaki
Toshiba Medical

Support from GE Healthcare
Funding from NIH R01HL072260

Arterial Spin Labeling

Time of Flight (TOF) MRA
PC VIPR – Aortic Coarctation

2 month old boy
Aortic Coarctation
PC VIPR Anatomy and Velocities

CHD: PC VIPR Anatomy and Velocities

Velocities
Pressure gradient

2 month old boy
aortic coarctation

Interactive Visualization and Analysis of Complex Flow Patterns in Congenital Heart Disease

Abstract #2968

Double Inlet Left Ventricle

2 year old female
Status post Bidirectional Glenn procedure
Anterior View
RA and RV Flow with 4D PC-MRI in Normal Volunteers and Tetralogy of Fallot

Abstract

#4067

Flow patterns – SVC, IVC, and RA

Normal volunteers
- Primary RA filling in systole
- Single clockwise vortex during systole

TOF patients
- Primary RA filling in diastole
- One large vortex where SVC and IVC come together with part of IVC flow directed toward RA appendage (*)

Patient with TOF

Scimitar Syndrome

A. Frydrychowicz et al., Circulation 2010 121(23)

18 month old male with Scimitar Syndrome

- Qs/Qa = 1.33
- Atrial Septal Defect
 - Flow = 1.34 L/min
- Anomalous Pulmonary Venous Return
 - “Scimitar Vein” Flow = 0.42 L/min
- Abnormal Systemic Artery
 - Flows to right lung

PC VIPR - CHD

A. Francois, ISMRM 2009

- Anomalous PV draining into IVC
- Right PA going to RLL
- Abnormal systemic artery to RLL

18 month old boy
Pulmonary venolobar (Scimitar) syndrome
18 month old male with Scimitar Syndrome

Atrial Septal Defect
- Flow = 1.34 L/min

Anomalous Pulmonary Venous Return
- "Scimitar Vein" Flow = 0.42 L/min

Abnormal Systemic Artery
- Flows to right lung

bSSFP with inflow spin labeling

Balanced SSFP (FIESTA)
- Provides high blood signal with T2/T1 contrast
- Inflow effect is utilized to visualize vessels

Inversion pulse
- Suppresses veins and background tissues
- Select any vessels you want to depict

Advantages
- High blood signal
- Artery and venous separation
- Depiction of blood flow in any direction
- Free breathing (respiratory triggered with bellows)

Works well in abdomen and pelvis