

Data Integration and Data Mining - RTOG Bioinformatics Y. Xiao, Ph.D. RTOG, ACR Radiation Oncology, Jefferson Medical College

Evidence Based Radiation Oncology

Radiation Therapy Oncology Group (RTOG)

- ► Improve The Survival Outcome And Quality Of Life
- Evaluate New Forms Of Radiotherapy Delivery
 Test New Systemic Therapies In Conjunction With Radiotherapy
- Employ Translational Research Strategies

RTOG Bioinformatics Mission

To facilitate the development and to develop personalized predictive models for radiation therapy guidance from specific characteristics of patients and treatments with integrated clinical trial databases, bridging clinical science, physics, biology, information technology and mathematics

BIOINFORMATICS ELEMENTS AND PROCEDURES Available to BioWG

Database

RT Dose/Images/Clinical Data Genomic/Proteomic Biomarker

Data Analysis

Protocol development/Protocol operation support/Trial Outcome-Secondary Analysis Validation/Development/Research

Protocol	N	Endpoints
0022 oropharyngeal cancer	60	Salivary function
0117 lung	73	Pneumonitis and esophagitis
0126 prostate	~1500	Erectile dysfunction; rectal bleeding Fecal incontinence vs dose
0225 nasopharyngeal	60	Salivary function
0232 prostate brachytherapy		
0234 head and neck	230	TCP? Ongoing, not recruiting
0236 lung SBRT	52	Ongoing: TCP, toxicity
0321 prostate HDR brachy	110	Late/Acute GU/GI
0522 head and neck		Local control
0529 IMRT anal canal cancer	59	GI/GU acute
9311 lung	~150	NIH R01 (Deasy). Toxicity: esophagitis; pneumonitis
9406 EBRT prostate	800	NIH R01 (Tucker) toxicity
9803 3D CRT GBM	40	Brain toxicity

RTOG

3

Challenges to Share Data

[..] the problem is not really technical [í]. Rather, the problems are ethical, political, and administrative. Lancet Oncol 2011;12:933

Administrative (time)
 Political (value, authorship)
 Ethical (privacy)

4.Technical

RTOG

RTOG

CAT Approach

CAT is a research project in which

we develop an <u>IT infrastructure</u> -> technical

to make radiotherapy centers

semantic interoperable (SIOp*) -> administrative

while the data stays inside your hospital -> ethical

under <u>your full control</u> -> *political*

* SIOp level 3 = Machine Readable ->Data in common syntax and with common meaning

Key Features

- ["] No sharing of data, truly federated
- ["] Machine learning (retro.) & clinical trials (prosp.)
- ["] NCI Thesaurus with formal additions
- ⁷ 5 languages, 5 countries & 5 legal systems
- ["] Focus on radiotherapy
- ["] Inclusion of non-academic centers
- ["] Industry involvement

DATA ANALYSIS - Evidence Based Radiation Therapy Quality Assurance

RTOG

		Absolute value	of difference of regist	ration shifts (mm); me	$an \pm SD$ (range)
Subsets of the comparisons		LR dimension	SI dimension	AP dimension	Three-dimension
of registration results	Treatment site	ΔLR	ΔSI	ΔAP	$\Delta \vec{L}\vec{R} + \Delta \vec{S}\vec{I} + \Delta \vec{A}$
TomoTherapy vs. the three software systems	Head-and-neck $(n = 9)$	1.7 ± 1.5 (0.6-5.4)	$2.3 \pm 1.4 (0.54.9)$	$1.6 \pm 1.3 \; (0.43.1)$	3.8 ± 1.2 (2.5–6.2
67 I.I.I	Prostate $(n = 12)$	$1.3\pm1.0(0.13.1)$	$1.6 \pm 1.4 \ (0.0-5.1)$	2.7 ± 2.3 (0.2-6.3)	3.9 ± 2.0 (0.8-6.8
Elekta vs. the three software systems	Head-and-neck (n = 9)	2.1 ± 1.6 (0.4-5.0)	1.4 ± 0.7 (0.2–2.8)	$2.5 \pm 0.9 (1.4 4.0)$	3.8 ± 1.4 (2.0-6.0
	Prostate $(n = 12)$	$0.5 \pm 0.4 \ (0.0 - 1.3)$	$1.4\pm0.8\;(0.0{-}2.7)$	$0.9\pm 0.6~(0.1{-}1.8)$	$1.9 \pm 0.6 (0.9 - 2.5)$
Varian vs. the three software systems	Head-and-neck (n = 9)	3.6 ± 3.2 (1.2-8.6)	3.3 ± 1.0 (1.6–4.4)	2.6 ± 0.6 (1.1–3.2)	6.1 ± 2.0 (3.4–9.2
	Prostate $(n = 9)$	$1.3 \pm 1.1 \ (0.2 - 3.2)$	$2.6 \pm 1.5 \; (0.5 4.9)$	$1.5 \pm 0.8 \ (0.5 - 2.8)$	3.5 ± 1.3 (1.1-5.0
All clinical results vs. the three software systems*	Head-and-neck (n=27)	$2.5\pm2.3\ (0.48.6)$	$2.3 \pm 1.3 \; (0.2 4.9)$	$2.3 \pm 1.0 \ (0.4 - 4.0)$	4.6 ± 1.8 (2.0-9.2
	Prostate $(n = 33)$	$1.0 \pm 0.9 (0.0 - 3.2)$	$1.8 \pm 1.3 \ (0.0-5.1)$	$1.7 \pm 1.6 (0.1{-}6.3)$	3.1 ± 1.7 (0.8-6.8
Complete comparison between each other [†]	Head-and-neck $(n = 54)$	$2.6 \pm 2.1 \; (0.1 8.6)$	$1.7 \pm 1.3 \; (0.0 4.9)$	$1.8 \pm 1.1 \; (0.1 4.0)$	4.1 ± 1.9 (1.1–9.2
	Prostate $(n = 66)$	$1.1 \pm 1.0 (0.0-4.6)$	$2.1 \pm 1.7 (0.0-6.6)$	$2.0 \pm 1.8 (0.1-6.9)$	$3.5 \pm 2.0 (0.2 - 8.3)$

	0813	Seamless Phas	e I/II Study of Stereotactic L	ung Radiotherapy (SBRT) fo	r Early
Protocol #	(disease site)	Number	Absolute value of diff	erence of shifts (mm);	mean±SD (range)
11010001 #1	(discuse site)	of datasets	Left-Right	Superior-Inferior	Anterior-Posterio
0915	(Lung)	71	1.8 ± 1.2 (0.0 - 6.4)	2.0 ± 1.1 (0.0 - 6.9)	2.0 ± 0.9 (0.0 - 5.0
0813	(Lung)	21	1.7 ± 0.8 (0.1 - 5.1)	2.2 ± 1.0 (0.3 - 5.0)	$2.0 \pm 1.1 (0.1 - 4.8)$
0631	(Spine)	6	0.7 ± 0.6 (0.1 - 1.5)	2.9 ± 3.8 (0.0 - 7.0)	0.4 ± 0.1 (0.1 - 0.9
0920 (He	ad&Neck)	35	1.5 ± 1.0 (0.1 - 6.7)	2.5 ± 2.2 (0.0 - 8.2)	1.4 ± 1.1 (0.0 - 7.3
Ov	erall	133	1.7 ± 1.0 (0.0 - 6.7)	2.2 ± 1.5 (0.0 - 8.2)	1.8 ± 1.0 (0.0 - 7.3
	0630	A Phase II Tri Sarcomas of th	al of Image Guided Preopera ne Extremity	tive Radiotherapy for Primar	y Soft Tissue
	0631	Phase II/III St	udy of Image-Guided Radios	urgery/SBRT for Localized S	spine
RTOG		MetastasisR	TOG CCOP Study		40

Г

Imaging m	odality	Number	Absolu	te value of di	fference	of shifts (mm)	; mean±SD (1	range
imaging m	odanty	f datasets	Le	ft-Right	Super	ior-Inferior	Anterior-Po	sterio
kV CB	CT	96	1.7 ± 1.1	.1 (0.0 - 6.7)	1.6 ± 0	.9 (0.0 - 6.9)	1.7 ± 1.1 (0.	0 - 5.
MVC	Т	37	1.5 ± 1.	.0 (0.1 - 5.1)	3.7 ± 1	.7 (0.1 - 8.2)	1.9 ± 0.9 (0.	0 - 7.
Overa	all	133	1.7 ± 1.	.0 (0.0 - 6.7)	2.2 ± 1	.5 (0.0 - 8.2)	1.8 ± 1.0 (0.	0 - 7.
		Left	-Right	Superior-	Inferior	Anterior-P	osterior	
	Lung	2.33	±1.06	4.58±2	2.96	4.19±2	.80	
	Spine	3.50	±4.67	1.25±	1.63	2.70±2	.40	
	Head&Nee	ck 2.08	±1.55	2.97±2	2.19	2.02±1	.62	

LKB parameters from Dempster-Shafer theory and other references

Emami and Burman 24.5 0	-
	0.18
Semenenko <i>et al</i> 2008 29.9 0	0.41
Marks et al 2010 30.75	

