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IMRT Planning: The Trial-And-Error Process

= Define the optimization
DVH objectives

= Get the bixel-blocks
(segments)

= Calc. the dose distribution

= Review the DVHs & Dos
Distributions
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IMRT Planning : The Trial-And-Error Process

= OAR dose sparing is patient specific and often better than the
conservative population-based guidelines

Lack of objective measure to identify patient-specific OAR sparing
to guide the trial-and-error process

Bladder DVHs from Prostate Plans

A RTOG guidelines.
— Clinical Plans

A RTOG guidelines
— Clinical Plans

Porcent Volume (%)




IMRT Planning : The Trial-And-Error Process

= Experience matters
= More experience usually leads to better plan quality and less
planning time
= Planning time matters
= Adequate planning time usually leads to better planning quality
= Complexity of the plan leads to exponential increase of planning
time
= Planning objectives matters
Objectives closer to individual patient goals lead to more efficient
planning, sometimes better plan quality
Template based objectives leave more room for improvement and
more plan quality variations
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Knowledge Modeling For IMRT Planning

= To provide patient specific dose sparing references, based on
an array of patient anatomical features, prior planning
experience, and outcome-based guidelines

= Understand the patient’s anatomical, physiological and other
factors that influence plan design of dose coverage

= Quantify their individual influence via mathematical modeling
and machine learning

= Codify treatment planning experience and guidelines using
knowledge engineering

= Model these factors to guide treatment planning for new cases
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Knowledge of Dose
Distribution

Online Re-Optimization of Prostate IMRT Plan for Adaptive Radiation Therapy - A
Feasibility Study and Implementation

Danthai Thongphiew, PHD Thesis 2007, Case Western Reserve University

Towards Clinical Implementation Of Online Adaptive Radiation Therapy for Prostate
Cancer

Taoran Li, PHD Thesis expected 2013, Duke University




Knowledge of Dose Distribution

= Experience Learned From Online Adaptive Radiation
Therapy (Online ART)

= Hypothesis:

= Anatomical changes from same patient can be coded through
deformable registration

= Wrapping the dose distribution from original plan to the new
anatomy reinforces the dose conformality, and carries the same
dose sparing preferences for this patient

Step 1. Deform the Original Dose for New Anatomy

Original Plan In New Plan Dose Distribution
Database Via Deformable Registration
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Step 2. Auto-Optimization With Linear Goal Programming

Target: D, - d: +d; =D/

OARs: D, —d;' < Dl.p

Minimize: Z:an(df+ +d7)+ ZWNT,i(diJr)

iel ieNT

Voxel based — flexible control, solved in 1-2 min.
Direct dose based — what’s formulated, what’s delivered
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Step 3. Plan Quality Vs. Dose Objectives

Step 3. Plan Quality QA: ART vs. Eclipse

BLADDER

% Average Dose
% Average Dose

DI Ds0 DM DS DSO DM DS DSY D30 DOO DSO D30 D DSO D30 DO DSO D3O

— PL#1 PL#2 PL#3 PL#4 PL#5 PL#6

A planning quality evaluation tool for prostate adaptive IMRT based on machine learning
Zhu et al. Med. Phys. 38, 719: 723, 2011.
l

IMRT Planning For Online Adaptive RT

= Step 1. Deformable registration of CBCT and CT
Wrap CT dose to CBCT anatomy
-> known perfect dose

= Step 2. Run auto-optimization to get fluence map
-> known optimization parameters

= Step 3. Run auto plan quality QA
-> known plan quality parameters
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Knowledge Training

Database of

High Quality
Treatment Cases

Base Anatomy Base Plan
(PTV, OARs) (3D Dose)

| Y=f(X) \:I
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Knowledge of DVH
Distribution

Modeling Inter-Patient Variation of Organ-At-Risk Sparing in IMRT Plans: An
Evid Based Plan Quality Evaluation

Yuan et al

MO-D-BRB-10 Monday 2:00:00 PM - 3:50:00 PM Room: Ballroom B
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Knowledge of DVH Distribution
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Figure 17 A) A example of a DVH of the target B) An example of DVH of the OAR C)

The prescribed dose based on the given DVHs and voxel position

I
Multiobjective Approach To Morphology-based Radiation Treatment Planning
Boonyanit Mathayomachan , PHD Thesis 2005

Case Western Reserve University
| AAPM 2012

Knowledge of DVH Distribution

Dose-distance Correlation

Anatomical And Dosimetric Features

“#4 + Geometrical Distance

.+ XModified Distance Distance to target histogram (DTH): PCS
Distance to OAR (DOH): PCS

OAR volumes
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Example Of Parotid Sparing Modeling

Case1  Casez  Case3  Camed  Cases  Cases
— Actual Plan DVH
0 50 100 50 100 50 100 50 100 — Modeled DVH In
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Examples of Rectum DVH Modeling
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Example of Bladder DVH Modeling
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IMRT Planning Parameters: More Than DVHs

| how the dose distribution
should look like .................

T Treatment
—’{ Optimizer Plan

Iteratively minimizing the
difference between calculated
DVH and DVH objectives

Iterations

Given leﬁ Variable
— _ — -
AAPM 2012
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Knowledge Training Database of
High Quality
Treatment Cases

Dose/Plan

Anatomy
Features

Features

Response
variables
output:Y;

Descriptor
variables
input:X;
Model training:
Machine Learning
Y=F(X)
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Knowledge of DVH Distribution

Dicom Data Import
Case Name PTV Name

Dicom File Directory

Program Directory
EV1_u_DVH_model Select Directory

| Get DVH Constraint




Knowledge of Patient Specific
Trade-offs & Preferences

Individualized Trade-Off of Dose Coverage and Sparing in IMRT Planning
Yuan et al
SU-E-T-626 Sunday 3:00:00 PM - 6:00:00 PM Room: Exhibit Hall
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Modeling of Trade-off: Parotid
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Modeling of Trade-off: Parotid
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Knowledge Based IMRT Planni

ng

= Planning time can be fast (minutes)

Plan quality can rival human expert planner

= Knowledge of IMRT planning can be independent of delivery

platforms (e.g. VMAT vs. IMRT)

= Allow more freedom (such as beam ang
= Allow interactive process

= Integrate with all sources of knowledge

le, beam energy)

= Truly individualized, patient-specific treatment planning
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Knowledge-Based IMRT Planning
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Thank You & Happy Plan

ning

With All Types of Knowledge Formats
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