



### **Learning Objectives**

- Understand proton beam dosimetry characteristics and compare them to photon beams
- Familiarize with proton dosimetry QA tools
- Understand challenges in proton therapy QA

## Pro Cure



























































































































### **Morning QA Procedure**

#### One setup, One device, One beam to get the following:

- 1. Output consistency check
- Output consistency check
   Range consistency check
   Symmetry consistency check
   Imaging vs mechanical alignment check
   In-room laser check











### **Colinearity Test**

Purpose: to check that imaging isocenter coincides with radiation isocenter to within 1 millimeter.

Imaging Iso 😑 Proton Iso



| Daily Checks                                                      | Monthly Checks  | Annual Checks |
|-------------------------------------------------------------------|-----------------|---------------|
| Imaging vs mechanical alignment                                   |                 |               |
| Output                                                            |                 |               |
| Range                                                             |                 |               |
| Software Communication                                            |                 |               |
| Proton-imaging isocentricity                                      |                 |               |
| Flatness & Symmetry                                               |                 |               |
| Ranges and Modulations                                            |                 |               |
| Mechanical                                                        |                 |               |
| PPDs + Modulations                                                |                 |               |
| <ul> <li>Combinations of field sizes and gantry angles</li> </ul> |                 |               |
| X-ray source & detector image characteristics                     |                 |               |
| Dose rate dep                                                     | endencies<br>42 | ProCure       |

## **QA Challenges in PT**

## ProCure

### **QA challenges in PT**

- Proton delivery modes & control systems are complex-more things to check
- Lack of methodology or forum to exchange ideas that
   improves QA processes very few clinical proton physicists
- PT systems are not robust yet few years of operations, many bugs to resolve (software & hardware)
- QA programs highly depend on vendor's system specs

## Pro Cure

### QA Challenges in PT – cont.

- There are currently no task group recommendations for proton beam QA. Where relevant we follow guidelines from the following sources:
  - IAEA TRS 398
  - ICRU 59
  - ICRU 78
  - TG 40
  - TG 142
  - Journal publications
- Lack of dedicated commercial QA devices for PT –adaptation of photon QA devices is necessary

ProCure

### QA Challenges in PT – cont.

- It takes time to switch, tune, and deliver beam in every room -QA tasks takes longer compared to linac systems
- Current PT centers have 3-5 rooms with sequentially beam delivery beam sharing is necessary
- Cost of proton specific QA equipment
- Multi vendor software/hardware lack of true integration

## Pro Cure



### Anatomy of a Nozzle

- Compensator
- Aperture(s)
- Snout with variable positions
- Lollipops
- Modulator wheels (multiple tracks)
   Multiple ion chambers
- Multiple ion chambers
   Collimators (X-Y)
- Collimators (X-Y)
  X-Y magnets (3 scanning fields)
- Range verifier
- X-ray source
- Scatterers
- Light field

#### • OUTPUT

Modulation (very large combinations)
 Range (very large combination)





### Summary

- Proton Therapy Systems are complex and requires specialized equipment to measure various beam parameters
- It is imperative to make use of commercially available 1D & 2D arrays and adapt them to PT to check routinely for
  - Beam parameters (R,M, Symmetry, Flatness, Output)
  - Imaging System
  - Robotic positioning System
- Standardization of QA procedures for PT is essential in establishing tolerance limits

# Pro Cure

## Contributors

Yuanshui Zheng Xiaoning Ding Anthony Mascia Eric Ramirez Yixiu Kang Wen Hsi

## ProCure

Thank you