The role of quantitative molecular imaging in therapy development

Paul Kinahan, PhD, FIEEE

Director of PET/CT Physics Imaging Research Laboratory Department of Radiology University of Washington, Seattle, WA

Disclosures

Research Contract, GE Healthcare

	References	D	Number	Accuracy (%)		
Tumor entity	References	Purpose of the imaging studies	of patients	PET/CT	PET	(%) CT
Head and neck	Chen et al. (2006)35	TNM staging	70	95	83 ^a	73 ^a
	Schoder et al. (2004) ³⁶	Lesion detection	68	96	90 ^a	ND
NSCLC	Lardinois et al. (2003) ²⁴	T stage N stage	40 37	98 84	80 ^a 87	78 ^a 64
	Shim et al. (2005) ³⁷	T stage N stage	106 106	86 84	ND ND	79 69 ^a
Colorectal	Kim et al. (2005) ¹⁰	Recurrence	51	88	71 ^a	ND
	Votrubova et al. (2006) ³⁸	Recurrence	84	90	75 ^a	ND
Lymphoma	Allen-Auerbach et al. (2004)33	(Re)staging	73	93	84 ^a	ND
	la Fougère et al. (2006) ³⁹	(Re)staging	50	99	98	89 ^a
Melanoma	Reinhardt et al. (2006)31	(Re)staging	250	97	93 ^a	79 ^a
	Mottaghy et al. (2007)40	(Re)staging	102	91	92	ND

Expanding the role for molecular imaging to therapy development

We need better therapies

Lung cancer survival (US)

Percent survival 5 years after diagnosis

Site	1975-1977	1984-1986	1996-2004
Breast, female	75	79	89
Prostate	69	76	99
Lung	13	13	16

Therapies

- Surgery: most potentially curative, but only for very localized disease
- Radiation: combined with chemo can cure in small number of patients. Can provide palliation in most patients
- Chemotherapy: offers modest improvements in median survival for advanced stage disease

An increasing pharmaceutica pncology					,	•		nent	for
VOTTIENT (Paropania) AVASTIN (Southenia)									
2004 2005	2006	2007	2008	2009	2010	2011	2012	2013	
	AND IS CARDING		A PLANE IS THE O		10.200185	10.00	and a start		
Treatment Population	2007	2008	2009	2010	2011	2012	2013	2014	2015
Incidence of disease ¹	2,365	2,404	2,445	2,476	2,513	2,554	2,597	2,643	2,677
Patients treated with Anti- angiogenesis treatment ^e	68k	84k	108k(E)	133k(E)	169k(E)	207k(E)	248k(E)	274k(E)	311k(E)
% of cancer patients	2.8%	3.4%	4.4%	5.3%	6.7%	8.1%	9.5%	10.3%	11.6%
% of cancer patients	2.8%	3.4%	4.4%					10.3% GE Hei	

Potential reasons for low success rate

- · Easy targets gone
- Wealth of information about targets, little
 understanding in context of whole organism
- · Few animal models translate to humans
- Lengthy clinical trials required to establish efficacy
- Tolerance to risk can be lower with drugs that treat chronic diseases
- Drug development process is inefficient and expensive

Role for Imaging in Drug Development

- · Drug development is costly and inefficient
- New tools are needed to *identify losers early* Rule out unsuccessful methods earlier (before phase III)
 - Improving phase III 'hit rate' from 1 in 5 to 1 in 3 could reduce development costs by ~50% [DiMasi 2002]
- · Imaging biomarkers can help
- Quantitative PET imaging has enormous potential to boost efficiency of clinical trials evaluating new therapies [Frank 2003]

Imaging bioma	irker examples
Biomarker	Assay
Tumor volume	CT, MRI
β-amyloid	PET
Tumor proliferation	PET
Bone mineral density	DXA, CT
Receptor occupancy	PET
Plaque composition	US, IR, MRI, PET
Courtesy Jeff Evelhoch, Merck	

The case for *molecular* imaging biomarkers

Quantitative Imaging Requirements

- · Prior studies that measure variance
- · Defined protocols
- Monitoring of protocols
- Calibration and QA/QC procedures to ensure variance stays within assumed range
- *Optional*: Techniques and procedures that improve the measurement accuracy

- For quantitative imaging, each component of the imaging chain requires
 - Quality Assurance (i.e protocol)
 - Quality Control (checking what actually happened)
- · Outline for all imaging methods:

Sources of Error in SUV Values SUV = Standardized Uptake Value

 $SUV = \frac{PET_{ROI}}{rc}$ $\overline{D'_{\rm INJ}/V'}$

PET = measured PET activity concentration D' = decay-corrected injected dose V' = surrogate for volume of distribution

It is important to minimize SUV errors for **serial** (e.g. response to Rx) or **multi-center** studies

Some potential sources of error are: • High blood glucose levels

- High blood glucose levels
 Variations in dose uptake time
- Uncalibrated clocks (including scanner) and cross calibration of scanner with dose calibrator
- Errors in radioactive dose assay
- Variations in image reconstruction and other processing protocols and parameters
 Variations in images analysis methods: E.g. how ROIs are drawn and whether max or mean SUV values are reported

PET/CT scanners are a moving target: Recent PET Technology Innovations

- · Respiratory motion compensation
- Time of flight imaging
- Advanced modeling of PET physics in image reconstruction
- · Extended axial field of view
- Cost effective PET/CT scanners
- New detector systems
- PET/MR scanners
- CT dose reduction methods

Challenges with Implementing Quantitative Imaging - Industry

- There is significant variability between manufacturers in allowable scan protocols and trade-offs in image quality
- There are few, if any, tests of the quantitative accuracy of images transferred between display/analysis systems
- Due to several reasons:
 - Lack of standards by which vendors can assure compliance of acquisition/processing algorithms
 Lack of convincing (to vendors) evidence of a
 - market for quantitative imaging

Challenges with Implementing Quantitative Imaging - Imaging Sites

- There is a tension with imaging protocols suitable for current clinical practice
- Often there is no standard clinical practice
- E.g. when 'standard of care' is requested, any of the following may occur:
 - Blood glucose levels may be ignored or not reported
 - Tracer uptake time may vary
 - PET images may be acquired in 2D or 3D
 - PET images may be reconstructed with different algorithms
 PET images may be reconstructed with different smoothing
 - SUVs may be measured differently and/or on different
 - platforms
 - May do an MR or CT scan instead

What do we do?

There are three main routes of action

- 1. Accreditation authorities
- 2. Standards definitions and harmonization initiatives
- 3. Calibration methods and/or phantoms

Quantitative Imaging Initiatives

- ACRIN Centers of Quantitative Imaging Excellence (CQIE)
- Quantitative Imaging Biomarkers Alliance (QIBA)
 Now includes the Uniform Protocols for Imaging in Clinical Trials (UPICT)
- Quantitative Imaging Network (QIN)
- American Association of Physicists in Medicine Task Group 145 (Quantitative Imaging for PET)
- Reconstruction Harmonization Project (ACRIN / SNM-CTN / QIN / QIBA)
- · EANM and EORTC initiatives

Calibration phantoms for Quantitative PET/CT Standards and/or Accreditation

- Uniform Cylinder (used by ACRIN and many others)
- ACR PET phantom
- NEMA NU-2 Image Quality (IQ) phantom
- Modified NEMA Image Quality (IQ) phantom
- SNM CTN phantom
- Cross Calibration Phantom with NIST-traceable
 ⁶⁸Ge standard for Dose Calibrator
- Digital reference object

CONCLUSION

The role of quantitative PET/CT imaging in therapy development

- There is a need for improved
 - cancer therapies
 - Individualized assessment of therapies
- Quantitative PET imaging can help if we
 determine the bias and variance
 - constrain (and optionally reduce) the variance
- To enable quantitative PET we need to
- educate and link together groups in the different areas of responsibility (i.e. big picture)
- develop standards by which manufacturers and users can assure compliance

Acknowledgements

- Wolfgang Weber, University Hospital Freiburg
- Robert Jeraj, U Wisconsin
- Larry Clarke, NCI-CIP
- Ed Jackson, MD Anderson
- Michael McNitt-Gray, UCLA
- Dan Sullivan, RSNA
- Ronald Boellaard, VUMCDavid Mankoff, Hannah Linden, Robert Doot, U Washington
- Bavid Markon, Harman Enden, Robert Doot,Rich Wahl, Johns Hopkins
- Richard Frank, GE
- Ling Shao, Philips
- Support from NCI, RSNA, SNM, AAPM, ACRIN