Volumetric Modulated Arc Therapy

David Shepard
Swedish Cancer Institute
Seattle, WA

Disclaimer

• Our VMAT work has been sponsored in part by Elekta.

Outline

David Shepard
• VMAT Basics and VMAT Plan Quality
• Commissioning a VMAT delivery system
• Commercial VMAT Solutions

Richard Popple
• VMAT Patient Specific Quality Assurance
• Advanced VMAT Techniques
• Starting a VMAT program
Are you using rotational IMRT in your clinic?

1. Yes 48%
2. No 52%

Rotational IMRT

Serial Tomotherapy
nomosSTAT (Best nomos)

Helical Tomotherapy
HI-Art (Tomotherapy, Inc)

Intensity Modulated Arc Therapy (IMAT)
RapidArc (Varian)
VMAT (Elekta)

If yes, what rotational IMRT approach are you using?

1. Varian RapidArc 25%
2. Eleka VMAT 25%
3. Helical Tomotherapy (Accuray) 26%
4. Serial Tomotherapy (Best NOMOS) 25%
VMAT Basics

- An arced-based approach to IMRT that can be delivered on a conventional linear accelerator with a conventional MLC.
- During each arc, the leaves of the MLC move continuously as the gantry rotates.
- The degree of intensity modulation is related to the number of beam shapes per arc and the number of arcs.
Arc Based IMRT - The First Decade

- **Serial tomotherapy**: NOMOS Peacock binary MLC and Corvus planning system served as first commercial IMRT solution.
- **Helical tomotherapy**: Tomotherapy Inc. introduced the Hi-Art system with the first patients treated in 2002 at the University of Wisconsin.
- **IMAT/VMAT**: Largely withered on the vine:
 1. Linac manufacturers did not have control systems capable of delivering IMAT.
 2. No robust inverse planning tools for IMAT.

Efforts to Revive Interest in IMAT

University of Maryland School of Medicine

- In 2000, we conducted a phase 1 clinical trial under an IRB protocol where IMAT plans were delivered to 50 patients.
- Key limitations were: (1) constant dose rate during rotation; and (2) no inverse planning.
Example 1 - Prostate

- Two sets of bilateral arcs.
- 1 set of arcs matches BEV of prostate.
- 1 matches BEV of prostate - rectum.
- Weights of arcs are optimized.

Example 2: Spinal Ependymoma

5 arc treatment
IMAT - Initial Experience

- 50 patients were treated in this trial: central nervous system (17 patients), head and neck (25 patients) and prostate (8 patients).
- Average treatment time was 7.5 minutes.
- Demonstrated IMAT can be delivered safely and accurately on a conventional linac.

IMAT - Forward Planning

- Dosimetrists used an iterative trial-and-error approach to determine starting and stopping angles, the beam shapes, and beam weights.
- Planning was time consuming.
- No guarantee that a plan was close to optimal.
- A robust inverse planning solution is required to take full advantage of the capabilities of IMRT.
- IMAT inverse planning, however, proved to be highly complicated due to the need to account for the interconnectedness of the beam shapes within each arc.

Inverse Planning for IMAT

- A robust inverse planning solution is required to take full advantage of the capabilities of IMRT.
- IMAT inverse planning, however, proved to be highly complicated due to the need to account for the interconnectedness of the beam shapes within each arc.
Interconnectedness of Beam Shapes

- Leaf motion between adjacent angles is limited by leaf travel speed and gantry rotation speed.
- For example, if the gantry speed is 10 degree/sec and the leaf travel speed is 3 cm/sec, then the maximum leaf travel distance between two adjacent angles is 3 cm.

IMAT - Inverse Planning

- We developed two IMAT inverse planning approaches:
 - Directly optimizes aperture shapes and weights throughout each arc.
 - Converts optimized fixed field IMRT plan into IMAT plan

VMAT Commercial Introduction

- In 2008, Elekta and Varian introduced control systems that are capable of delivering IMAT.
- Key innovation was that the dose rate, gantry speed, and MLC leaf positions could be changed dynamically during rotational beam delivery.
- The term VMAT was suggested by Karl Otto to differentiate single arc rotational IMRT.
New Study: VMAT vs. Tomotherapy

- Collaborative study between Swedish Cancer Institute and University of Virginia.
- 6 prostate, 6 head-and-neck, and 6 lung cases were selected for this study.
- Fixed field IMRT, VMAT, and Tomotherapy were compared in terms of plan quality, delivery time, and delivery accuracy.
Head & Neck Case #1

- Two targets with prescription levels of 5040 and 4500 cGy

Head & Neck Case #1

- Solid lines: VMAT
- Dashed lines: Tomotherapy

H&N Example #2

- Solid = VMAT
- Dashed = Tomotherapy
Table 1: Lung cases (6 patients). Plan comparison between fixed-field IMRT, VMAT and HT

<table>
<thead>
<tr>
<th></th>
<th>IMRT</th>
<th>VMAT</th>
<th>HT</th>
<th>Wilcoxon matched-pair signed rank test P</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTV (%)</td>
<td>96.5</td>
<td>96.5</td>
<td>98.0</td>
<td>0.575</td>
</tr>
<tr>
<td>SD (Gy)</td>
<td>1.4</td>
<td>1.4</td>
<td>1.5</td>
<td>0.438</td>
</tr>
<tr>
<td>Mean dose (Gy)</td>
<td>15.3</td>
<td>15.2</td>
<td>15.8</td>
<td>0.625</td>
</tr>
<tr>
<td>Cord</td>
<td>19.8</td>
<td>19.9</td>
<td>20.0</td>
<td>0.084</td>
</tr>
<tr>
<td>Total body</td>
<td>3.9</td>
<td>3.9</td>
<td>4.2</td>
<td>0.563</td>
</tr>
<tr>
<td>MT per fraction</td>
<td>559</td>
<td>574</td>
<td>564</td>
<td>-</td>
</tr>
<tr>
<td>Delivery time</td>
<td>31.5</td>
<td>34.2</td>
<td>33.4</td>
<td>0.004</td>
</tr>
<tr>
<td>QA passing rate (%)</td>
<td>99.3</td>
<td>99.0</td>
<td>99.6</td>
<td>-</td>
</tr>
</tbody>
</table>

Abbreviations: PTV = planning target volume; SD = volume of PTV receiving 50% of prescription; SD = standard deviation of PTV dose; Mean = volume of structures receiving >2 Gy. A 3 passing rate was obtained using gamma analysis with 3 mm/3% limit. Values expressed as mean (range). The Wilcoxon matched-pair signed rank test is listed for VMAT vs HT.

Table 2: Prostate cases of patients. Plan comparison between fixed-field IMRT, VMAT and HT

<table>
<thead>
<tr>
<th></th>
<th>IMRT</th>
<th>VMAT</th>
<th>HT</th>
<th>Wilcoxon matched-pair signed rank test P</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTV (%)</td>
<td>95.0</td>
<td>95.0</td>
<td>94.0</td>
<td>0.063</td>
</tr>
<tr>
<td>SD (Gy)</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.688</td>
</tr>
<tr>
<td>Rectum</td>
<td>56.7</td>
<td>56.5</td>
<td>57.3</td>
<td>0.156</td>
</tr>
<tr>
<td>D150 (Gy)</td>
<td>25.7</td>
<td>24.3</td>
<td>24.6</td>
<td>0.098</td>
</tr>
<tr>
<td>D200 (Gy)</td>
<td>40.0</td>
<td>37.8</td>
<td>40.2</td>
<td>0.000</td>
</tr>
<tr>
<td>Bladder</td>
<td>38.0</td>
<td>37.4</td>
<td>38.6</td>
<td>0.438</td>
</tr>
<tr>
<td>D100 (Gy)</td>
<td>20.1</td>
<td>19.3</td>
<td>20.7</td>
<td>0.219</td>
</tr>
<tr>
<td>Prostate</td>
<td>25.5</td>
<td>25.1</td>
<td>25.9</td>
<td>0.000</td>
</tr>
<tr>
<td>D150 (Gy)</td>
<td>16.5</td>
<td>16.3</td>
<td>17.2</td>
<td>0.000</td>
</tr>
<tr>
<td>D200 (Gy)</td>
<td>36.5</td>
<td>37.4</td>
<td>38.6</td>
<td>0.438</td>
</tr>
<tr>
<td>Total body</td>
<td>5.6</td>
<td>5.3</td>
<td>5.9</td>
<td>0.333</td>
</tr>
<tr>
<td>MT per fraction</td>
<td>609</td>
<td>617</td>
<td>621</td>
<td>-</td>
</tr>
<tr>
<td>Delivery time</td>
<td>36.1</td>
<td>36.9</td>
<td>37.6</td>
<td>0.081</td>
</tr>
<tr>
<td>QA passing rate (%)</td>
<td>98.5</td>
<td>98.0</td>
<td>98.9</td>
<td>-</td>
</tr>
</tbody>
</table>

Abbreviations: (Dx = minimal dose to x% of structure, Dxy = prescription to PTV other abbreviations as in Table 1). Values expressed as mean (range). The Wilcoxon matched-pair signed rank test is listed for VMAT vs HT.

Table 3: Brain cases (4 patients). Plan comparison between fixed-field IMRT, VMAT and HT

<table>
<thead>
<tr>
<th></th>
<th>IMRT</th>
<th>VMAT</th>
<th>HT</th>
<th>Wilcoxon matched-pair signed rank test P</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTV (%)</td>
<td>96.8</td>
<td>96.0</td>
<td>96.9</td>
<td>0.622</td>
</tr>
<tr>
<td>SD (Gy)</td>
<td>1.8</td>
<td>1.4</td>
<td>1.5</td>
<td>0.641</td>
</tr>
<tr>
<td>Spinal cord</td>
<td>26.2</td>
<td>26.1</td>
<td>25.8</td>
<td>0.000</td>
</tr>
<tr>
<td>D150 (Gy)</td>
<td>13.5</td>
<td>13.2</td>
<td>13.9</td>
<td>0.037</td>
</tr>
<tr>
<td>Brain</td>
<td>4.8</td>
<td>4.5</td>
<td>4.9</td>
<td>0.013</td>
</tr>
<tr>
<td>D150 (Gy)</td>
<td>19.0</td>
<td>18.0</td>
<td>20.1</td>
<td>0.485</td>
</tr>
<tr>
<td>D200 (Gy)</td>
<td>9.0</td>
<td>8.0</td>
<td>10.0</td>
<td>0.001</td>
</tr>
<tr>
<td>Total body</td>
<td>5.8</td>
<td>5.8</td>
<td>6.0</td>
<td>0.001</td>
</tr>
<tr>
<td>MT per fraction</td>
<td>777</td>
<td>777</td>
<td>773</td>
<td>-</td>
</tr>
<tr>
<td>Delivery time</td>
<td>36.9</td>
<td>37.3</td>
<td>37.6</td>
<td>0.081</td>
</tr>
<tr>
<td>QA passing rate (%)</td>
<td>97.7</td>
<td>98.0</td>
<td>98.3</td>
<td>-</td>
</tr>
</tbody>
</table>

Values expressed as mean (range). The Wilcoxon matched-pair signed rank test is listed for VMAT vs HT.
Tomotherapy Developments

- With the current HiArt system, the jaw width and the couch speed are set to constant values for each plan.
- A new option with dynamic jaw motion and dynamic couch motion will be available soon that should improve the efficiency of delivery and the quality of the plans.

- DJ/DC couch plans were developed for 10 nasopharyngeal patients.
- As compared with a 2.5 cm fixed jaw setting, the mean integral dose was reduced by 6.3% and the average delivery time was reduced by 66%.

VMAT Commissioning
VMAT Commissioning

- VMAT commissioning and routine quality assurance builds upon your existing IMRT beam models and fixed-field IMRT QA program.
- During VMAT delivery, the MLC leaves are moving, the gantry is rotating, and the dose rate is changing.
- The dynamic nature of the delivery must be accounted for in the quality assurance.

VMAT Commissioning

- No AAPM guidance document has been produced and there is not a general consensus on the tests that must be performed as part of the commissioning of VMAT.
- The most commonly referenced document is a paper from Ling and colleagues from Memorial Sloan Kettering.
Test 1: Accuracy of DMLC positioning during VMAT

Picket fence pattern is delivered with rotating gantry. In this case a film was mounted on the blocking tray. Results compared to picket fence delivered in stationary mode.

Courtesy Richard Popple

Test 2: Ability to vary dose rate and gantry speed during VMAT

Each strip on the film is irradiated to the same MU using varying combinations of dose rate and gantry rotation speed.

Courtesy Richard Popple

Test 3: Ability to accurately vary MLC speed during VMAT

Different parts of the film were exposed to the same dose using the DMLC sliding window technique, combining different leaf speeds with different dose rates to achieve a designed dose pattern.

Courtesy Richard Popple
End-to-end test: Prostate - coronal

4.9% of pixels have $\gamma > 1$ (3%/3 mm)

Courtesy Richard Popple

Interrupted delivery

J.L. Bedford and A.P. Warrington, Commissioning of Volumetric Modulated Arc Therapy (VMAT), JROBP 73 (2) pp. 537-545 (2009)
TPS - Commissioning

- Beams that are well modelled for fixed-field may not need to be re-modelled for VMAT.
- It is critical, however, to verify the accuracy of your beam models through extensive measurements.
VMAT - Commercial TPS Solutions

- Varian → Eclipse RapidArc
- Philips → Pinnacle SmartArc
- Elekta → Monaco VMAT
- Nucletron → Oncentra MasterPlan VMAT
- Siemens/Prowess → Prowess Panther
- RaySearch → RayStation

What TPS are you using for VMAT?

1. Varian Eclipse 20%
2. Philips Pinnacle 21%
3. Elekta Monaco 19%
4. Nucletron Oncentra 20%
5. Other 20%

VMAT Planning Process

- The VMAT planning process is very similar to that for fixed-field IMRT.
- Additional VMAT-specific parameters may need to be selected. For example, in Pinnacle:
 - Number of arcs
 - Allowable delivery time per arc
 - Maximum leaf speed
1 arc vs. 2 arcs

Delivery time: 1 arc = 124 sec, 2 arcs = 181 sec

Maximum delivery time per arc

Delivery time

Thin solid: 60 sec/arc
Thick dashed: 90 sec/arc
Med. solid: 180 sec/arc
Med. dashed: 240 sec/arc
Delivery time

<table>
<thead>
<tr>
<th>Maximum time (sec/arc)</th>
<th>Estimated time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>140</td>
</tr>
<tr>
<td>90</td>
<td>181</td>
</tr>
<tr>
<td>180</td>
<td>325</td>
</tr>
<tr>
<td>240</td>
<td>356</td>
</tr>
</tbody>
</table>

Leaf motion constraint

- Thin solid: 1 mm/deg
- Thin dashed: 3 mm/deg
- Med. dashed: 5 mm/deg
- Med. solid: 10 mm/deg

Leaf motion

[Graph showing leaf motion with different thickness and speed constraints]
VMAT Planning Parameters
SmartArc Experience

• 1 arc is sufficient for simple cases such as prostate, but 2 arcs are needed for more complex cases such as H&N.
• We typically set a delivery time of 90sec/arc.
• We generally restrict the leaf motion to be 3mm/degree of gantry rotation for prostate cases and 4 or 5mm/degree for H&N cases.

Summary

• Since 2008, VMAT has become a widely adopted IMRT delivery technique.
• VMAT combines highly efficient delivery (< 2 minutes per arc) with highly conformal dose distributions.
• VMAT is a complex delivery technique requiring a thorough commissioning process.

Acknowledgments

• Daliang Cao
• Vivek Mehta
• Min Rao
• Fan Chen
• Richard Popple
• Ke Sheng
Swedish Medical Center

Picket fence test with simulated error

Gap 1.5 mm instead of 1 mm
0.5 mm offset

Courtesy Richard Popple
IMRT Delivery Techniques

- Compensators
- Step-and-shoot
- Sliding Window
- Tomotherapy
- IMAT
Why rotational delivery?

1 Beam 5 Beams 11 Beams

17 Beams 25 Beams 51 Beams

C-shaped Target Simulations

<table>
<thead>
<tr>
<th># Angles</th>
<th>Obj. Func. Value</th>
<th>Std. Dev. in target dose</th>
<th>d95</th>
<th>Mean dose to RAR</th>
<th>Total integral dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.685</td>
<td>0.124</td>
<td>0.747</td>
<td>0.488</td>
<td>2732.5</td>
</tr>
<tr>
<td>5</td>
<td>0.318</td>
<td>0.090</td>
<td>0.614</td>
<td>0.215</td>
<td>2563.3</td>
</tr>
<tr>
<td>7</td>
<td>0.242</td>
<td>0.064</td>
<td>0.667</td>
<td>0.206</td>
<td>2596.8</td>
</tr>
<tr>
<td>9</td>
<td>0.222</td>
<td>0.064</td>
<td>0.655</td>
<td>0.192</td>
<td>2508.3</td>
</tr>
<tr>
<td>11</td>
<td>0.202</td>
<td>0.058</td>
<td>0.979</td>
<td>0.186</td>
<td>2570.2</td>
</tr>
<tr>
<td>15</td>
<td>0.187</td>
<td>0.053</td>
<td>0.908</td>
<td>0.180</td>
<td>2542.9</td>
</tr>
<tr>
<td>21</td>
<td>0.176</td>
<td>0.049</td>
<td>0.912</td>
<td>0.171</td>
<td>2546.1</td>
</tr>
<tr>
<td>33</td>
<td>0.151</td>
<td>0.038</td>
<td>0.933</td>
<td>0.155</td>
<td>2543.5</td>
</tr>
</tbody>
</table>

Courtesy of Accuray Inc.