4D-MRI using Internal Surrogates

Jing Cai, PhD, DABR
Department of Radiation Oncology
Duke University Medical Center, Durham NC

Strategies for 4D-MRI

Real time 4D-MRI
- ultra-fast 3D MR sequence
- fast gradient, multi-coils, parallel processing
- inadequate image quality (3-4 mm, 1.5 s/f)

Retrospective 4D-MRI
- fast 2D MR sequence
- breathing signal (surrogate)
- adequate image quality (1.5x1.5x3 mm, 0.3 s/f)

Retrospective 4D-MRI
► Fast 2D cine MR
► Multiple slices
► Cine duration > 1 cycle
► Frame rate: ~3 f/s
► Slice thickness: 3-5 mm
► Pixel size: 1-2 mm

Image Acquisition

Respiratory Signal
► Surrogates
 - External
 - Internal/Image-based
► Signal processing
► Phase determination

Internal/image-based Surrogates

- Implant markers
- Diaphragm
- Air content
- Lung area
- Lung density
- Fourier transform
- Body area (axial, sagittal)
- Normalized cross correlation
- Deformable image registration

Fast MR Sequences

- TrueFISP/FIESTA (balanced steady state gradient echo)
 - T2*/T1, sensitive to fluid, band artifacts from long TR

- HASTE/SSFSE (single shot fast spin echo)
 - T2, good CNR, signal decay from lung echo train, blurring

- FLASH/Fast SPGR (fast spoiled gradient echo)
 - T1 (poor), tumor hypo-intensity

- EPI (echo-planar imaging)
 - GE-EPI (T2*), SE-EPI (T2), IR-EPI (T1)
 - susceptibility, ghosting, chemical shift, fat suppression

Fast MRI: Examples
Diaphragm as Surrogate

Slice Body Area (SBA): Axial

Slice Body Area (SBA): Sagittal

- Respiratory motion is mostly in SI and AP directions
- Potentially better correlation with tumor motion

Axial SBA ~ RPM: Example

Axial SBA ~ RPM: Summary

- Good correlation in the abdomen (R=0.94).
- Phase shifts observed in the lung in some patients.
Sagittal SBA: Examples

Sagittal SBA ~ Motion Tracking
- Respiratory signal (SBA v.s. ROI tracking)
- Motion tracking: cross-correlation algorithm

Sagittal SBA ~ Motion Tracking
- 7 Subjects, 5 single slice, 2 multi-slice
- Small phase difference in peaks (5.8%)

Surrogate: Fourier Transform
- 10 Subjects, 2 min scan, sagittal / coronal
- Small phase difference (~3.1 ± 4.8%)
- High correlation ($r^2=0.97±0.02$)

Validation: FT ~ Tracking
- 10 Subjects, 2 min scan, sagittal / coronal
- Small phase difference (~3.1 ± 4.8%)
- High correlation ($r^2=0.97±0.02$)
Validation

4D-MRI: Patient Example

- Tumor CNR: 20.1 in 4D-MRI, 2.5 in 4D-CT.

Summary

- 4D-MRI using internal surrogates is feasible.
- Slice body area and Fourier Transform are potential robust internal respiratory surrogates.
- Validation is essential for using internal respiratory surrogate.

4D Digital Human Phantom

4D-MRI for lung?

4D-MRI using internal surrogates is feasible.

- Slice body area and Fourier Transform are potential robust internal respiratory surrogates.
- Validation is essential for using internal respiratory surrogate.

Acknowledgements

Fang-Fang Yin, PhD
Brain Caizo, MD
Chris Willett, MD
Chris Kelsey, MD
Jim Chang, PhD
Paul Segars, PhD
Kevin Kelly, BS, RT(MR)
Raj Panta, MS
Fan Zhang, MS
Cindy Qin, BS

The Golfers Against Cancer (GAC) Foundation