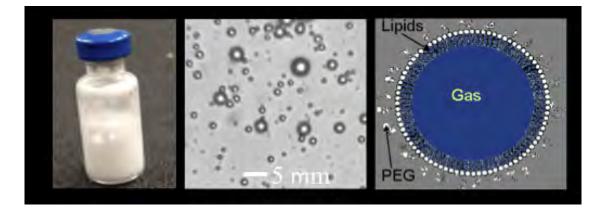
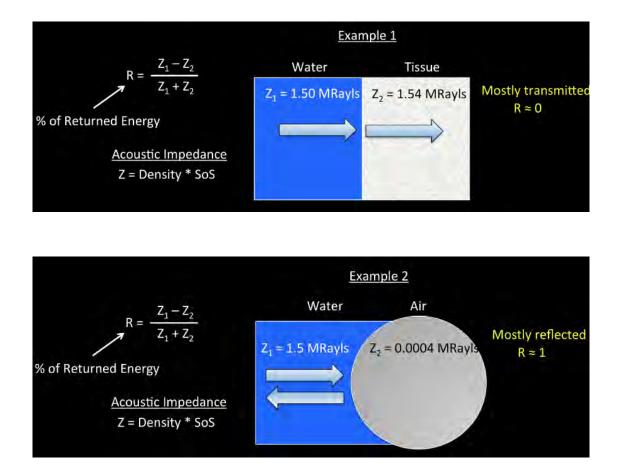

Ultrasound Contrast Agents

Jason E. Streeter and Paul A. Dayton AAPM 2012

Charlotte, NC

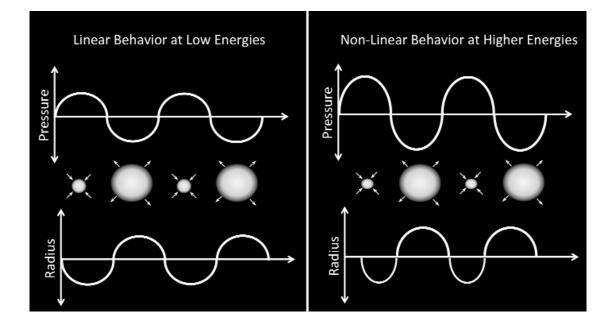

Discussion Points

- Part I
 - Microbubble Basics
 - Fundamentals in Contrast Imaging
 - Basic Imaging Applications
- Part II
 - Advanced Imaging Applications
 - Bioeffects and Therapeutic Applications
 - Safety

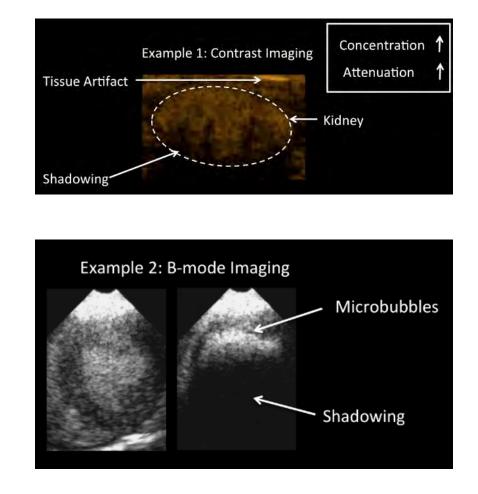

Microbubble Introduction

What are Microbubble Contrast Agents's

- Gas: Air, Perfluorocarbon, Sulfur Hexafluoride, etc
- Shell: Polymer, Lipid, Albumin, etc
- Size: Typically $< 8 \ \mu {\rm m}$ (Size of RBC)
- Confined to the Vascular Space


Microbubbles are Highly Echogenic

Reference: Szabo 2006


Microbubbles Oscillate and are Governed by...

- Frequency
- Acoustic Power
- Pulse Repetition Frequency
- Type of Gas Core
- Damping Coefficients
- Shell Properties

Reference: Quaia 2005

Microbubbles Attenuate

Reference: Quaia 2005

Describing the Motion of Microbubbles

Rayleigh - Plesset:

$$\rho RR^{\bullet} + \frac{3}{2}\rho R^{\bullet 2} = p_L - p_o \rho R^{\bullet 2} = p_L - p_{\infty}$$

$$\rho = \text{Density of Medium}$$

$$R = \text{Microbubble Radius}$$

$$R^{\bullet} = 1^{\text{st}} \text{ Time Derivative of Radius}$$

$$R^{\bullet \bullet} = 2^{\text{nd}} \text{ Time Derivative of Radius}$$

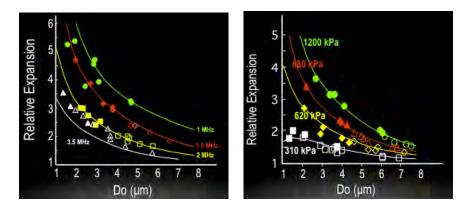
$$p_L = \text{Liquid Pressure at Wall}$$

$$p_{\infty} = \text{Liquid Pressure Away From}$$
Wall

Reference: Quaia 2005

Describing the Motion of Microbubbles

If you include the shell properties like viscosity and elasticity...

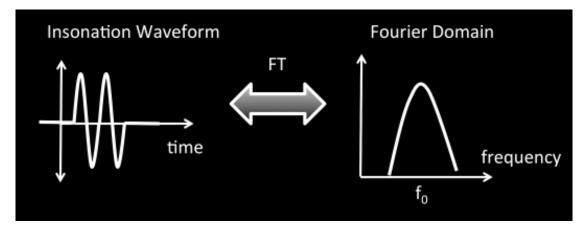

$$\rho RR^{\bullet} + \frac{3}{2}\rho R^{\bullet 2} = p_{go} \left(\frac{R_o}{R}\right)^{3\Gamma} - \frac{2S_T}{R} - \frac{4\eta R^{\bullet}}{R} - p_o + P_{(t)}\sin(wt)$$

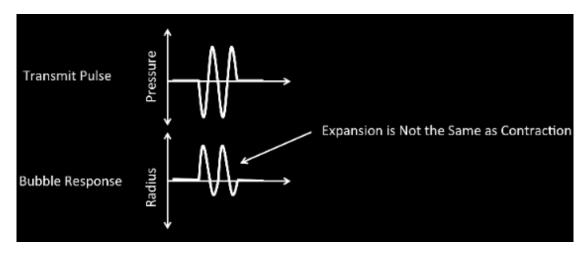
S = Surface Tension
 η = Liquid Shear Viscosity

This is a complex equation and is very difficult to model and simulate!

If you consider concentration and size distributionm the complexity is exacerbated.

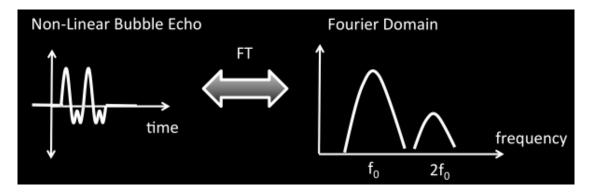
Reference: Quaia 2005 Notes


Microbubble Destruction Increases for High Acoustic Power, Long Pulse Lengths and Low Frequencies


Reference: Quaia 2005

Imaging Microbubbles

Microbubble response is related to the insonation frequency

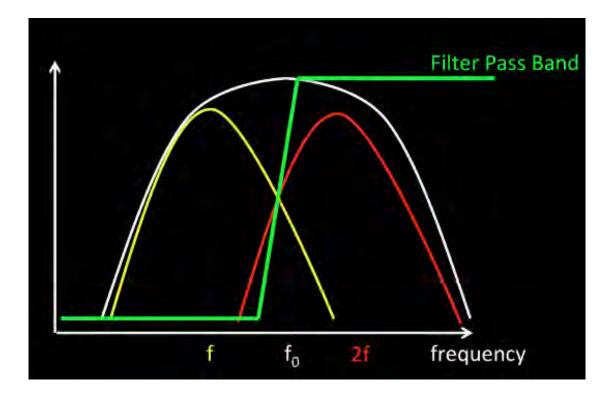

Microbubble response is non-linear

Reference: Quaia 2005

Imaging Microbubbles

Microbubbles generate harmonic and subharmonic energy

Imaging techniques take advantage of the microbubble properties

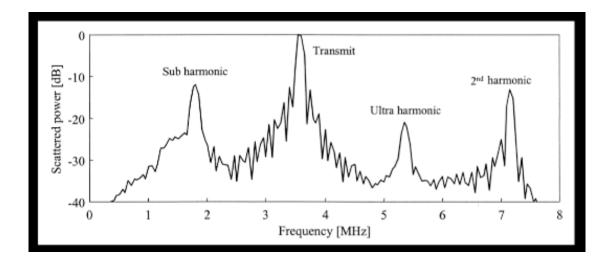

Goal: Separate the microbubble signal from the tissue

Reference: Quaia 2005

Harmonic Imaging

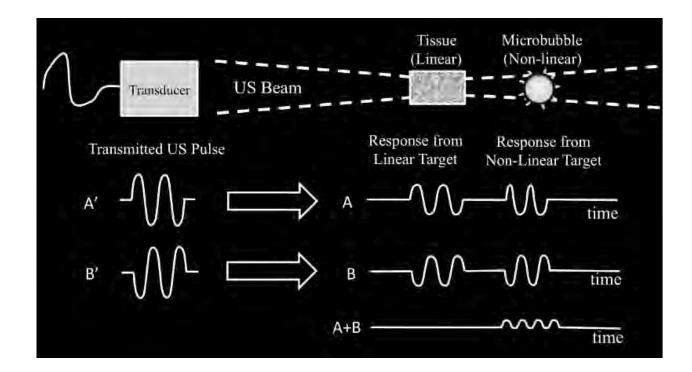
Harmonic Imaging

- Transducers have a finite bandwidth or frequency response
- Insonify microbubbles at frequency **f**
- \bullet Receive the returned signal at 2x f
- Use a high pass filter to eliminate unwanted low frequency signals
- NOTE: Strong tisuue signal can overpower weak harmonic signals



Reference: Quaia 2005

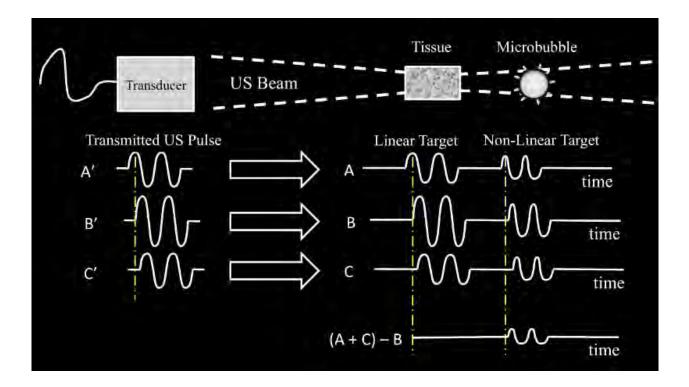
Subharmonic Imaging


Subharmonic Imaging

- Microbubbles have subharmonic energy
- Subharmonics occur at $\sim \frac{1}{2}$ of the transmitted frequency
- Tissue generated harmonic energies at high acoustic pressures
- Subharmonics allow for easy separation of signal from tissue
- Lower frequencies imply less attenutaion

Reference: Frinking 2000

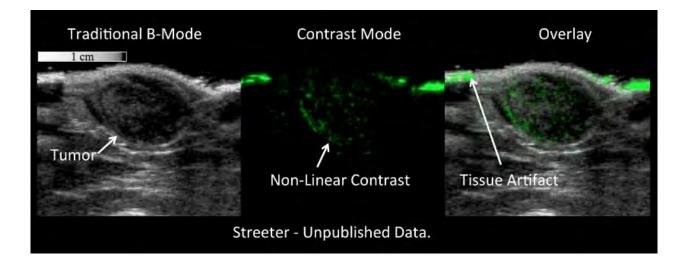
Pulse Inversion Imaging



At high enough pressures, tissue behaves non-linearly

Reference: Quaia 2005

Amplitude Modulation Imaging


Amplitude Modulation

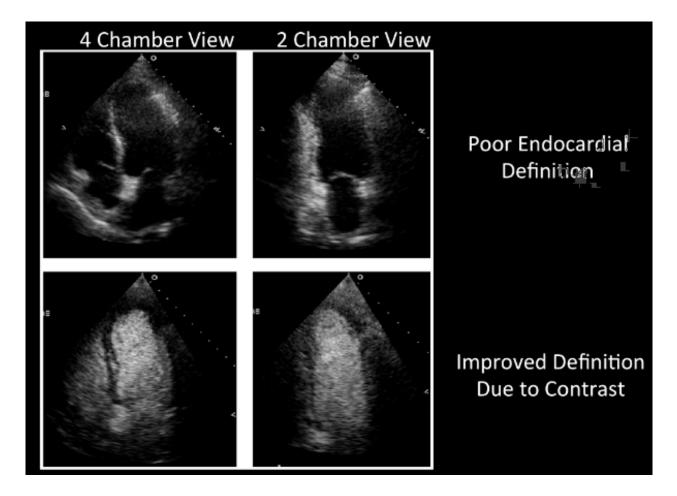
Combining Imaging Techniques

Example:

- Siemens Sequoia 15L8 Linear Array Transducer
- Cadence Pulse Sequencing Mode (Contrast Imaging)
- Amplitude Modulation and Pulse Inversion

Reference: Quaia 2005, Streeter Unpublished

Contrast-Enhanced Ultrasound

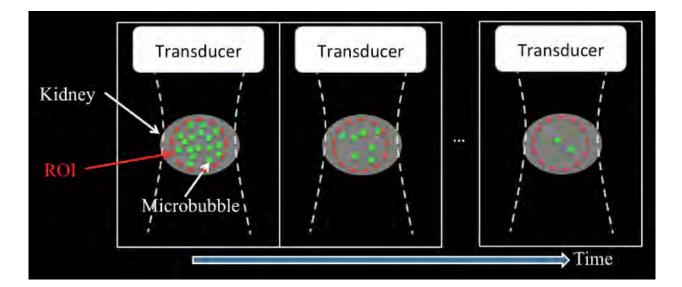

Contrast-Enhanced Ultrasound

- Blood is a weak scatterer
- Microbubbles help delineate the tissue from blood
 - Provides a clearer picture for clinicians
- Ability to quantify tissue perfusion
 - Transit time measurements
 - Evaluation of blood volume
 - Replenishment Kinetics

Reference: Quaia 2011

Contrast Echocardiography

- Assessment of Left Ventricular Cavity
 - Requires endocardial border visualization
 - Adequate visualization not possible in 15% of patients
- Left ventricular opacification
 - Microbubbles improve visualization
 - Produces homogenous opacification
 - Improves reader accuracy and confidence

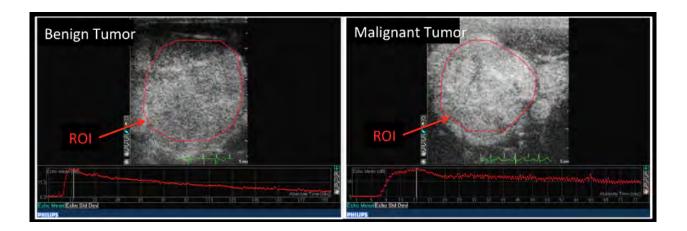


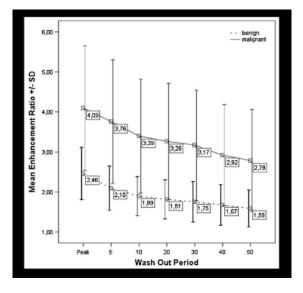
Reference: Kaufmann 2005

Time Intensity Curves

Time Intensity Curve

- Contrast-enhanced monitoring over time
- Select a region of interest
- Evaluate the intensity of the microbubbles

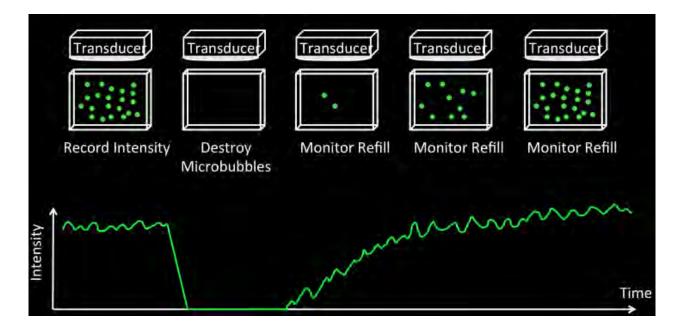




Reference: Quaia 2011

Time Intensity Curve Example

Example: Differentiation between benign and malignant thyroid tumors



Reference: Nemec 2012

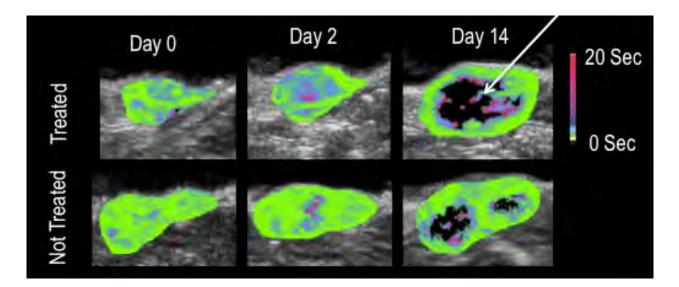
Destruction-Reperfusion

Destruction-Reperfusion

- Perfusion quantification helps understand diseased tissue
- Microbubbles are continuously infused
 - Steady-state clearance equals the inflow of microbubbles
- Microbubble destruction in a single plane
- Monitor the microbubble refill rate

Reference: Quaia 2011

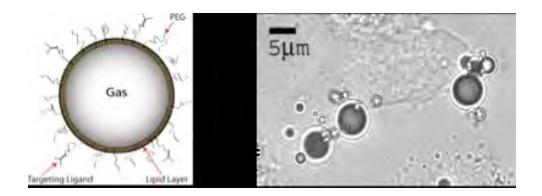
Destruction-Reperfusion


Destruction-Reperfusion

- Perfusion quantification helps understand diseased tissue
- What information do we get?
 - Time to peak intesity
 - Blood flow velocity (slope)
 - Fractional blood volume (Max Amplitude)
 - Blood volume (Area under the curve)
 - Mean transit time

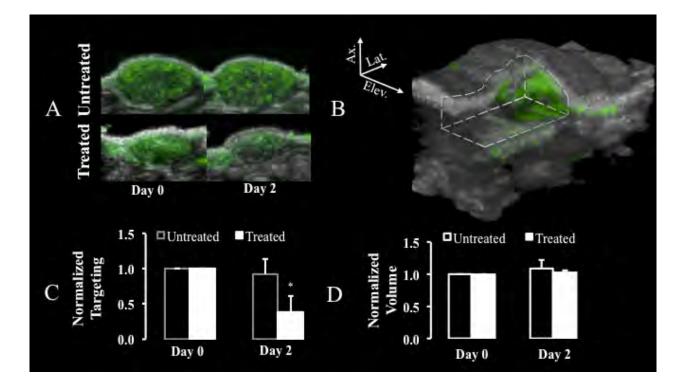
Reference: Quaia 2011

Destruction-Reperfusion Example


- Perfusion quantification helps understand diseased tissue
- Example:
 - Destruction-reperfusion at the pixel level
 - Monitoring time to 20%
 - Volumetric evaluation via elevational stepping
 - Tumor Perfusion Monitoring During Therapy

Reference: Streeter 2012

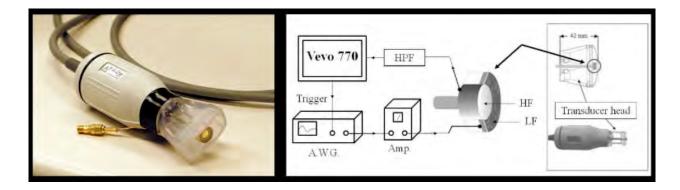
Molecular Imaging

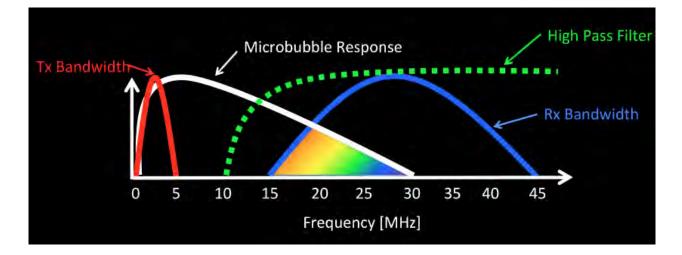

- Functional technique to evaluate molecular activity
- Knowledge of molecular signature of pathology
 - Integrins, selectins etc... expressed on the endothelium
 - Angiogenesis markers: VEGFR2, $\alpha_v\beta_3$, etc...
- Targeted microbubble contrast agents
 - Lipid monolayer fitted with adhesion ligand

Reference: Dayton 2002, Dayton 2004

MI and Response to Therapy

- Traditional methods for quantifying tumor progression volume measurements
- Volume measurements provide slow feedback
- Molecular imaging is a good alternative with faster response
- Example:
 - Cancer Type: Pancreatic adenocarcinoma
 - Therapy: Aurora Kinase Inhibitor
 - Target: $\alpha_v \beta_3$
 - Animal Model: Mouse

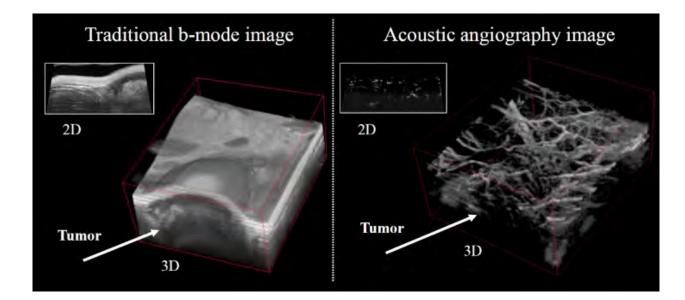



Reference: Streeter 2012

Acoustic Angiography

Acoustic Angiography:

- Traditional Ultrasound Transducer
 - Transmit and receive (x1 frequency bandwidth)
- Dual frequency imaging
 - Transmit using low frequency bandwidth
 - Receive using high frequency bandwidth

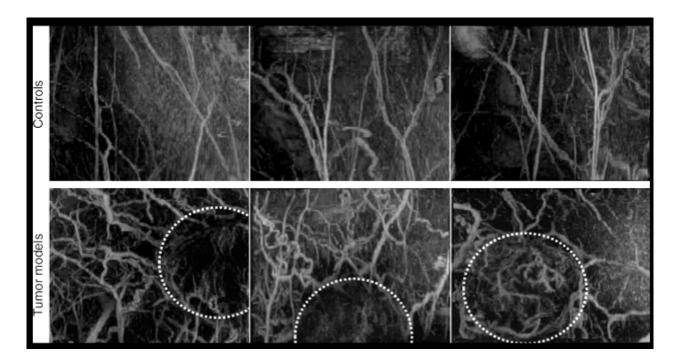


Reference: Kruse 2005, Gessner 2010

Acoustic Angiography

Acoustic Angiography:

- Advantages:
 - High frequency provides better resolution
 - Attenuation in one direction
 - Eliminates low frequency tissue signal
 - Less sensitive to breathing artifacts
- Disadvantages:
 - Transducers not yet commercial
 - High attenuation (shallow depth imaging)
 - Eliminates low frequency tissue signal
 - Not a low-MI imaging technique

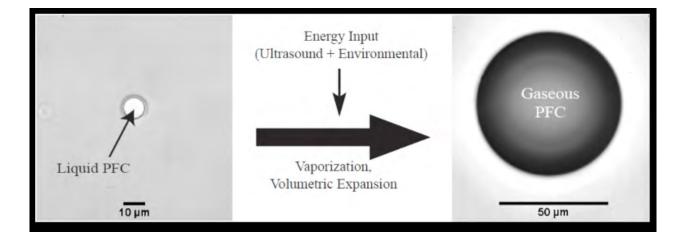


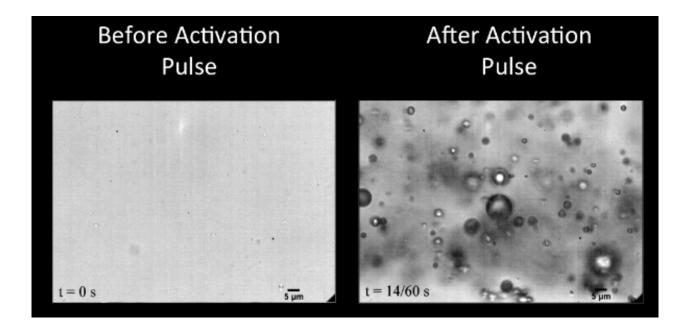
Reference: Gessner 2012

Acoustic Angiography

How can angiography be used in oncology research?

- Blood vessel structure, density, and pattern can be assessed non-invasively
- Microvascular tortuosity abnormalities are an indicator of tumor development
- Prior studies have shown that vessel morphological characteristics are related to tumor malignancy and response to treatment

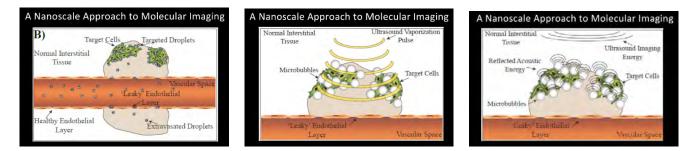



Reference: Bullitt 2009, Gessner 2012

Ultrasonic Activatable Nanoparticles

Ultrasonic Activatable Nanoparticles:

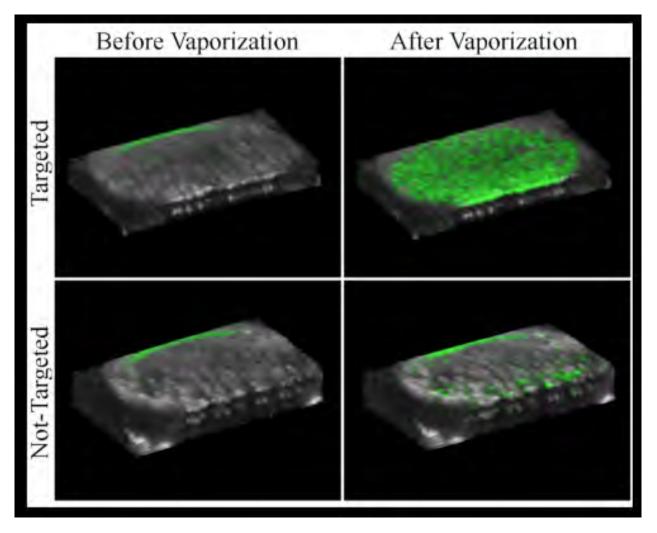
- Liquid perfluorocarbon core
- Lipid or polymer shell
- Tipped to gaseous state by ultrasound


Reference: Sheeran 2011

Ultrasonic Activatable Nanoparticles

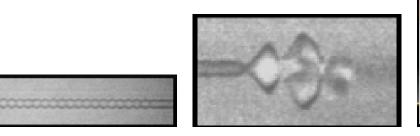
Ultrasonic Activatable Nanoparticles:

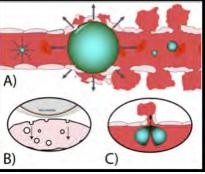
- Applications:
 - Vascular Occlusion
 - Cavitation Agents
 - Extravascular Diagnostics


Example: Molecular Imaging

Reference: Sheeran 2011, Sheeran 2012

Ultrasonic Activatable Nanoparticles


Example: Molecular Imaging



Reference: Sheeran 2012

Biological Effects

- Interaction between ultrasound and microbubbles
- Increased thermal energy conversion
- Mechanical stimulation of biological membranes
 - Microstreaming
 - High pressure and temperatures
- Cavitation (violent expand/collapse)
 - Shock waves
 - Microbubble jetting
 - High pressures and temperatures
 - Free radical formation

Reference: Quaia 2005

Biological Effects

• Mild

- Reversible Capillary Permeability Changes
- Reversible Cell Membrane Permeability
- Small Temperature Changes

• Strong

- Capillary Rupture
- Tissue Ablation
- Cell Death

Reference: Quaia 2005

Biological Effects

- Drug delivery can be achieved LOCALLY with focused ultrasound and microbubbles
- Enhanced blood brain barrier permeability
- Enhanced capillary permeability
- Increased cellular delivery through cell membrane permeability
 - Have been shown to significantly enhance local drug and gene delivery, and corresponding the rapeutic response
- Improved thermal ablation (requires less delivered power with microbubbles reduces thermal damage to healthy tissues)

Reference: Quaia 2005

Microbubble Clearance

- Microbubbles are vascular agents
- Phagocytosis in the liver and spleen
- Gas is expelled through the lungs
- Shell content is eliminated by the kidney and liverl
- Phospholipids enter normal metabolism
- Typical circulation half life ${\sim}5$ to 15 minutes

Reference: Quaia 2005

Safety Concerns

- 1994 Albunex (albumin shell air core)
- 1997 Optison (albumin shell perfluorocarbon core)
- 1994 Definity (lipid shell perfluorocarbon core)
- 2007 Blackbox Warning Microbubbles may cause fatalities
- Extensive Investigative Studies
- $\bullet > 1$ Million administered doses
- Most frequent adverse reactions are mild
- Headache: 5%, Nausea: 4%, Flushing: 4%, Dizziness: 3%
- Uncommon arrhythmias, hyper/hypotension, neurologic and an aphylactoid reactions

Procedure	Mortality	
Procedure Contrast Echo Myocardial Scintigraphy Exercise ECG Coronary arteriography	1:145,000 (SonoVue) 1:500,000 (Definity)	
Myocardial Scintigraphy	1:10,000	
Exercise ECG	1:2,500 (or AMI)	
Coronary arteriography	1:1,000	

Reference: Quaia 2005, optisonimaging.com

Safety Concerns

Blackbox remains, but contraindications to contrast agents restored to the original labeling

- Contraindications:
- Right-to-left, bi-directional, or transient right-to-left cardiac shunts
- Hypersensitivity to perflutren, to blood, blood products, or albumin
- Intra-arterial injection
- 30 minute observation period recommended for patients with...
- Pulmonary hypertension (undefined)
- Unstable cardiopulmonary conditions
- Ultrasound contrast agents are extremely safe with a low incidence of side effects
- They are not nephrotoxic or cardiotoxic
- Incidence of hypersensitivity or allergic events appears much lower than current X-ray or MR contrast agents
- As in all clinical procedures, physicians should balance potential clinical benefits against the theoretical possibility of associated adverse bioeffects in humans

Reference: Quaia 2005, http://www.fda.gov

References

- Bullitt E, Ewend M, Vredenburgh J, et al, Neuroimage, 2009, Aug;47 Suppl 2:T143-51
- Chomas J, et al... Threshold of fragmentation for ultrasonic contrast agents. Journal of Biomedical Optics 6(2), pg. 141-150, 2001.
- Dayton PA, et al., Targeted Imaging Using Ultrasound. J Magn Reson Imaging; 16 (4); 2002.
- Dayton PA et al., Mol Imaging. 2004 Apr;3(2):125-34.
- Frinking P, et al... Ultrasound Contrast Imaging: Current and New Potential Methods. UMB 26 (6), pg. 965-975, 2000.
- Gessner R, et al... High-resolution, high-contrast ultrasound imaging using a prototype dual-frequency transducer: In vitro and in vivo studies. IEEE Trans Ultrason Ferroelectr Freq Control. 2010.
- Gessner R, Aylward, S, Dayton PA., Radiology, 2012.
- Kaufmann E, et al... Contrast Echocardiography. Curr Probl Cardiol; 32 (2), pg 51-96, 2005.
- Kruse and Ferrara, IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Aug;52(8):1320-9
- Li CY, Shan S, Huang Q, Braun RD, Lanzen J, Hu K, Lin P, Dewhirst MW., Initial stages of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models, J Natl Cancer Inst. 2000 Jan 19;92(2):143-7.
- Nemec U, et al... Quantitative evaluation of contrast-enhanced ultrasound after intravenous administration of a microbubble contrast agent for differentiation of benign and malignant thyroid nodules: assessment of diagnostic accuracy. Eur Radiology: 22 (6); 2012.
- Quaia E, et al... Contrast media in ultrasonography-basic principles and clinical applications. New York: Springer; 2005.
- Quaia E. Assessment of tissue perfusion by contrast-enhanced ultrasound. Eur Radiology: 21 (3); 2011.
- Sheeran P, et al... Phase-change nanoagents for extravascular ultrasound molecular imaging: an in-vitro proof of principle. In Review. 2012.

- Sheeran P, et al... Formulation and acoustic studies of a new phase-shift agent for diagnostic and therapeutic ultrasound. Langmuir. Vol 27, Sept 2011.
- Streeter, Herrera-Loeza, Neel, Yeh, Dayton A Comparative Evaluation of Ultrasound Perfusion Imaging, Molecular imaging, and Volume Measurements in Evaluating the Response to Therapy, In Review.
- Szabo, TL. "Diagnostic ultrasound imaging: Inside out", pp. 157-161, Sept 2006
- http://www.fda.gov
- Opitisonimaging.com. Table Modified from Main et al JACC 2007;50:2434-7