LUTDACOUND CONTRACT ACENTS	
ULTRASOUND CONTRAST AGENTS	-
BASIC PRINCIPLES AND APPLICATIONS	
Jason E. Streeter & Paul A. Dayton	-
D N / E	
THE UNIVERSITY JOSEPH CHARDLINA JOSEPH CHARDLI	-
# CHAPEL HILL	
DISCUSSION POINTS	
• Part I	
Microbubble Basics	
Fundamentals in Contrast Imaging	
Basic Imaging Applications	
• Part II	
Advanced Imaging Applications	
Bioeffects and Therapeutic Applications	
 Safety 	
PART I	

MICROBUBBLE INTRODUCTION • What are Microbubble Contrast Agents? • Gas: Air, Perfluorocarbon, Sulfur Hexafluoride, etc... • Shell: Polymer, Lipid, Albumin, etc... • Size: Typically < 8 µm (Size of RBC) • Confined to the Vascular Space

MICROBUBBLE PROPERTIES • Microbubbles and Ultrasound • Highly Echogenic Dependent On Acoustic Impedance Differences Acoustic Impedance = Density * SoS Water. 1.50 Mrayls Brain: 1.56 MRayls Bone: 1.4 MRayls Muscle: 1.6 Mrayls Fat: 1.33 Mrays

MICROBUBBLE PROPERTIES Microbubbles in an Ultrasound Field Highly Echogenic Oscillate Oscillation Governed By... 1) Frequency 2) Pressure Amplitude 3) Pulse Repetition Frequency 4) Type of Gas Core 5) Damping Coefficients 6) Shell Properties Ouaia E, et al... Contrast media in ultrasonography-basic principles and clinical applications. New York: Springer, 2005.

MICROBUBBLE PROPERTIES		
Describing the Motion of a Microbubble		
• Rayleigh - Plesset $\rho RR^{\bullet \bullet} + \frac{3}{2}\rho R^{\bullet 2} = p_L - p_o \rho R^{\bullet 2} = p_L - p_o$		
Quaia E, et al Contrast media in ultrasonography-basic principles and clinical applications. New York: Springer; 2005.		

MICROBUBBLE PROPERTIES

- Describing the Motion of a Microbubble

• Rayleigh - Plesset
$$\rho RR^{**} + \frac{3}{2}\rho R^{*2} = p_L - p_o \rho R^{*2} = p_L - p_o$$

 $\rho = \text{Density of Medium}$

R = Microbubble Radius

R* = 1st Time Derivative of Radius

 $R^{\bullet \bullet} = 2^{nd}$ Time Derivative of Radius

p_L = Liquid Pressure at Wall

p_∞ = Liquid Pressure Away From Wall

Quaia E, et al... Contrast media in ultrasonography-basic principles and clinical applications. New York: Springer; 2005.

MICROBUBBLE PROPERTIES

- Describing the Motion of a Microbubble
 - · Rayleigh Plesset
 - Including Shell Properties
 - Viscosity of the Shell
 - Elasticity of the Shell

$$\rho R R^{\bullet \bullet} + \frac{3}{2} \rho R^{\bullet 2} = p_{go} \left(\frac{R_o}{R} \right)^{3\Gamma} - \frac{2S_T}{R} - \frac{4\eta R^{\bullet}}{R} - p_o + P_{(t)} \sin(wt)$$

Quaia E, et al... Contrast media in ultrasonography-basic principles and clinical applications. New York: Springer; 2005.

MICROBUBBLE PROPERTIES

- Describing the Motion of a Microbubble
 - Rayleigh Plesset
 - Including Shell Properties
 - Viscosity of the Shell
 - Elasticity of the Shell

$$\rho R R^{\bullet \bullet} + \frac{3}{2} \rho R^{\bullet 2} = p_{go} \left(\frac{R_o}{R} \right)^{3\Gamma} - \frac{2S_T}{R} - \frac{4\eta R^{\bullet}}{R} - p_o + P_{(t)} \sin(wt)$$

S = Surface Tension η = Liquid Shear Viscosity

MICROBUBBLE PROPERTIES

- Describing the Motion of a Microbubble
 - Rayleigh Plesset
 - Including Shell Properties
 - Viscosity of the Shell
 - Elasticity of the Shell

Quaia E, et al... Contrast media in ultrasonography-basic principles and clinical applications. New York: Springer; 2005.

MICROBUBBLE PROPERTIES

- Describing the Motion of a Microbubble
 - · Rayleigh Plesset
 - Including Shell Properties
 - Viscosity of the Shell
 - Elasticity of the Shell
 - - Concentration and Size Distributions Exacerbate Complexity!

Quaia E, et al... Contrast media in ultrasonography-basic principles and clinical applications. New York: Springer; 2005.

MICROBUBBLE PROPERTIES

- Microbubble Destruction Increases for...
 - High Pressure Amplitudes

Chomas J, et al... Threshold of fragmentation for ultrasonic contrast Agents. Journal of Biomedical Optics 6(2), pg. 141-150, 2001

MICROBUBBLE PROPERTIES
Microbubble Destruction Increases for
Low Frequencies
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Chomas J, et al Threshold of fragmentation for ultrasonic contrast Agents. Journal of Biomedical Optics 6(2), pg. 141-150, 2001

MICROBUBBLE PROPERTIES

- Microbubble Destruction Increases for...
 - High Pressure Amplitudes
 - Low Frequencies
 - Long Ultrasound Pulse Lengths

Quaia E, et al... Contrast media in ultrasonography-basic principles and clinical applications. New York: Springer; 2005.

MICROBUBBLE PROPERTIES

- Microbubble Destruction Increases for...
 - High Pressure Amplitudes
 - Low Frequencies
 - Long Ultrasound Pulse Lengths
- Most Important: High Pressure Amplitude, Low Frequency

BASIC CONTRAST IMAGING TECHNIQUES	

IMAGING MICROBUBBLES Microbubble Response Related to Insonation Frequency Microbubbles Generate Harmonic and Sub Harmonic Energy Sub Harmonic Example: Insonation: 180 kPa Little Sub Harmonic Energy More Sub Harmonic Energy More Sub Harmonic Energy Insonation: 310 kPa Little Sub Harmonic Energy More Sub Harmonic Energy Chomas J, et al... Nondestructive Subharmonic Imaging. IEEE Trans. Ultrasonics 49(7), pg. 883-882, 2002

IMAGING MICROBUBBLES

- Microbubble Response Related to Insonation Frequency
- Microbubble Response is Non-Linear
- Microbubbles Generate Harmonic and Sub Harmonic Energy
- Imaging Techniques Take Advantage of Microbubble Properties

Quaia E, et al... Contrast media in ultrasonography-basic principles and clinical applications. New York: Springer; 2005.

IMAGING MICROBUBBLES

- Microbubble Response Related to Insonation Frequency
- Microbubble Response is Non-Linear
- · Microbubbles Generate Harmonic and Sub Harmonic Energy
- Imaging Techniques Take Advantage of Microbubble Properties
- Goal: Separate Microbubble Signal From Tissue

HARMONIC IMAGING High Pass Filter Received Signal
Filter Pass Band f f ₀ 2 frequency
Quaia E, et al Contrast media in ultrasonography-basic principles and clinical applications. New York: Springer; 2005.

SUBHARMONIC IMAGING
Microbubbles have Subharmonic Energies
Frinking P, et al Ultrasound Contrast Imaging: Current and New Potential Methods. UMB 26 (6), pg. 965-975, 2000.

SUBHARMONIC IMAGING

- Microbubbles have Subharmonic Energies
- Occur at ~1/2 of the Transmitted Frequency

Frinking P, et al... Ultrasound Contrast Imaging: Current and New Potential Methods. UMB 26 (6), pg. 965-975, 2000.

SUBHARMONIC IMAGING

- Microbubbles have Subharmonic Energies
- Response at ~1/2 of the Transmitted Frequency

Frinking P, et al... Ultrasound Contrast Imaging: Current and New Potential Methods. UMB 26 (6), pg. 965-975, 2000.

SUBHARMONIC IMAGING

- Microbubbles have Subharmonic Energies
- Response at ~1/2 of the Transmitted Frequency
- Tissue Does Not Generate Sub Harmonic Energy

Frinking P, et al... Ultrasound Contrast Imaging: Current and New Potential Methods. UMB 26 (6), pg. 965-975, 2000.

SUB HARMONIC IMAGING

- Microbubbles have Subharmonic Energies
- Response at ~1/2 of the Transmitted Frequency
- Tissue Does Not Generate Sub Harmonic Energy
- Sub Harmonic Imaging

Frinking P, et al... Ultrasound Contrast Imaging: Current and New Potential Methods. UMB 26 (6), pg. 965-975, 2000.

SUB HARMONIC IMAGING

- Microbubbles have Subharmonic Energies
- Response at ~1/2 of the Transmitted Frequency
- Tissue Does Not Generate Sub Harmonic Energy
- Sub Harmonic Imaging
 - Easy Separation from Tissue

Frinking P, et al... Ultrasound Contrast Imaging: Current and New Potential Methods. UMB 26 (6), pg. 965-975, 2000.

SUB HARMONIC IMAGING

- Microbubbles have Subharmonic Energies
- Response at ~1/2 of the Transmitted Frequency
- Tissue Does Not Generate Sub Harmonic Energy
- Sub Harmonic Imaging
 - Easy Separation from Tissue
 - Lower Frequencies Mean Less Attenuation

Frinking P, et al... Ultrasound Contrast Imaging: Current and New Potential Methods. UMB 26 (6), pg. 965-975, 2000.

SUB HARMONIC IMAGING

- Microbubbles have Subharmonic Energies
- Response at ~1/2 of the Transmitted Frequency
- Tissue Does Not Generate Sub Harmonic Energy
- Sub Harmonic Imaging
 - Easy Separation from Tissue
 - Lower Frequencies Mean Less Attenuation
 - Low Frequency Trade-off with Resolution

Frinking P, et al... Ultrasound Contrast Imaging: Current and New Potential Methods. UMB 26 (6), pg. 965-975, 2000.

PULSE INVERSION TECHNIQUES Tissue Microbubble (Non-linear) US Beam US Beam

IMAGING TECHNIQUES SUMMARY - Single Pulse Strategies - Harmonic Imaging - Disadvantage: Interference with Tissue Signal - Sub Harmonic Imaging - Disadvantage: Low Frequency = Poor Resolution - Post-Processing Strategies - Pulse Inversion - Disadvantage: Lower Frame Rate, Sensitive to Tissue Motion - Amplitude Modulation - Disadvantage: Lower Frame Rate, Sensitive to Tissue Motion - Most Systems Today Incorporate Some Combination

CONTRAST-ENHANCED ULTRASOUND	
Blood is a Weak Scatterer	
Quaia E, et al., Contrast media in ultrasonography-basic principles and clinical applications. New York: Springer; 2005.	
CONTRAST-ENHANCED ULTRASOUND	-
Blood is a Weak Scatterer	
Microbubbles Help Delineate Tissue From Blood	
Quaia E, et al Contrast media in ultrasonography-basic principles and clinical	
applications. New York: Springer; 2005.	
CONTRAST-ENHANCED ULTRASOUND	
 Blood is a Weak Scatterer Microbubbles Help Delineate Tissue From Blood 	-
Provides Clearer Picture For Clinicians	
Quaia E, et al Contrast media in ultrasonography-basic principles and clinical applications. New York: Springer; 2005.	

CONTRAST-ENHANCED ULTRASOUND Blood is a Weak Scatterer Microbubbles Help Delineate Tissue From Blood Provides Clearer Picture For Clinicians Ability to Quantify Tissue Perfusion Quaia E, et al... Contrast media in ultrasonography-basic principles and clinical applications. New York: Springer, 2005. CONTRAST-ENHANCED ULTRASOUND Blood is a Weak Scatterer

Provides	Clearer	Picture	For	Clir

• Microbubbles Help Delineate Tissue From Blood

Ability to Quantify Tissue Perfusion

• Transit Time Measurements

Quaia E, et al... Contrast media in ultrasonography-basic principles and clinical applications. New York: Springer; 2005.

CONTRAST-ENHANCED ULTRASOUND

- Blood is a Weak Scatterer
- Microbubbles Help Delineate Tissue From Blood
 - Provides Clearer Picture For Clinicians
- Ability to Quantify Tissue Perfusion
 - Transit Time Measurements
 - Evaluation of Blood Volume

$\overline{}$	_
"	"

CONTRAST-ENHANCED ULTRASOUND	
Blood is a Weak Scatterer	
Microbubbles Help Delineate Tissue From Blood	
 Provides Clearer Picture For Clinicians 	
 Ability to Quantify Tissue Perfusion 	
Transit Time Measurements	
Evaluation of Blood Volume	
Replenishment Kinetics	
Quaia E, et al Contrast media in ultrasonography-basic principles and clinical applications. New York: Springer; 2005.	
CONTRACT FOLIOCARRIGORARILIV	
CONTRAST ECHOCARDIOGRAPHY	
 Assessment of Left Ventricular Cavity 	
Victoria Estat Contact Education and Company Contact Contact Contact	
Kaufmann E, et al Contrast Echocardiography. Curr Probl Cardiol; 32 (2), pg 51-96, 2005.	
CONTRAST ECHOCARDIOGRAPHY	
 Assessment of Left Ventricular Cavity Requires Endocardial Border Visualization 	
Requires Endocardial Border Visualization	
Kaufmann E, et al Contrast Echocardiography. Curr Probl Cardiol; 32 (2), pg	

CONTRAST ECHOCARDIOGRAPHY	
Assessment of Left Ventricular Cavity	
 Requires Endocardial Border Visualization 	
 Adequate Visualization Not Possible in 15% of Patients 	
Kaufmann E, et al Contrast Echocardiography. Curr Probl Cardiol; 32 (2), pg 51-96, 2005.	
31-30, 2003.	
CONTRACT FOLIOCARRIOGRAPHY	
CONTRAST ECHOCARDIOGRAPHY	
Assessment of Left Ventricular Cavity	
Requires Endocardial Border Visualization	
 Adequate Visualization Not Possible in 15% of Patients Left Ventricular Opacification 	
- Lett ventricular Opacification	
Kaufmann E, et al Contrast Echocardiography. Curr Probl Cardiol; 32 (2), pg 51-96, 2005.	
31-30, 2003.	
CONTRACT FOLIOCARRICORARUY	
CONTRAST ECHOCARDIOGRAPHY	
Assessment of Left Ventricular Cavity	
Requires Endocardial Border Visualization Adoquate Visualization Not Bessible in 15% of Patients	
 Adequate Visualization Not Possible in 15% of Patients Left Ventricular Opacification 	
Microbubbles Improve Visualization	

Kaufmann E, et al... Contrast Echocardiography. Curr Probl Cardiol; 32 (2), pg 51-96, 2005.

CONTRAST ECHOCARDIOGRAPHY

- Assessment of Left Ventricular Cavity
 - Requires Endocardial Border Visualization
 - Adequate Visualization Not Possible in 15% of Patients
- Left Ventricular Opacification
 - Microbubbles Improve Visualization
 - Produces Homogenous Opacification

Kaufmann E, et al... Contrast Echocardiography. Curr Probl Cardiol; 32 (2), pg 51-96, 2005.

CONTRAST ECHOCARDIOGRAPHY

- Assessment of Left Ventricular Cavity
 - Requires Endocardial Border Visualization
 - Adequate Visualization Not Possible in 15% of Patients
- Left Ventricular Opacification
 - Microbubbles Improve Visualization
 - Produces Homogenous Opacification
 - Improves Reader Accuracy and Confidence

Kaufmann E, et al... Contrast Echocardiography. Curr Probl Cardiol; 32 (2), pg 51-96, 2005.

CONTRAST ECHOCARDIOGRAPHY 4 Chamber View 2 Chamber View Poor Endocardial Definition Kaufmann E, et al... Contrast Echocardiography. Curr Probl Cardiol; 32 (2), pg 51-96, 2005.

CONTRAST ECHOCARDIOGRAPHY		
4 Chamber View	2 Chamber View	Poor Endocardial Definition
		Improved Definition Due to Contrast
Kaufmann E, et al Contrast Echocardiography. Curr Probl Cardiol; 32 (2), pg 51-96, 2005.		

TIME INTENSITY CURVE		
Contrast-Enhanced Monitoring Over Time		
Quaia E, et al Contrast media in ultrasonography-basic principles and clinical applications. New York: Springer; 2005.		

TIME INTENSITY CURVE
Contrast-Enhanced Monitoring Over Time
Select a Region of Interest
Quaia E, et al Contrast media in ultrasonography-basic principles and clinical applications. New York: Springer; 2005.

TIME INTENSITY CURVE

- Contrast-Enhanced Monitoring Over Time
- Select a Region of Interest
- Evaluate the Intensity of the Microbubbles

Quaia E, et al... Contrast media in ultrasonography-basic principles and clinical applications. New York: Springer; 2005.

TIME INTENSITY CURVE

- Contrast-Enhanced Monitoring Over Time
- Select a Region of Interest
- Evaluate the Intensity of the Microbubbles
- How It Works:

TIME INTENSITY CURVE

- Contrast-Enhanced Monitoring Over Time
- Select a Region of Interest
- Evaluate the Intensity of the Microbubbles
- How It Works:

TIME INTENSITY CURVE

- Contrast-Enhanced Monitoring Over Time
- Select a Region of Interest
- Evaluate the Intensity of the Microbubbles
- Example:

TIME INTENSITY CURVE

- Contrast-Enhanced Monitoring Over Time
- Select a Region of Interest
- Evaluate the Intensity of the Microbubbles
- Example:
 - Evaluation of Liver Lesions

Wilson S, et al... Microbubble-enhanced US in body imaging: What Role? Radiology: 257(1); 2010.

TIME INTENSITY CURVE

- Contrast-Enhanced Monitoring Over Time
- Select a Region of Interest
- Evaluate the Intensity of the Microbubbles
- Example:

29

DESTRUCTION-REPERFUSION	
Perfusion Quantification Helps Understand Diseased Tissue	
Quaia E. Assessment of tissue perfusion by contrast-enhanced ultrasound. Eur Radiology: 21 (3); 2011.	
DESTRUCTION-REPERFUSION	
Perfusion Quantification Helps Understand Diseased Tissue	
Microbubbles are Continuously Infused	
Quaia E. Assessment of tissue perfusion by contrast-enhanced ultrasound. Eur Radiology: 21 (3); 2011.	
DESTRUCTION-REPERFUSION	
Perfusion Quantification Helps Understand Diseased Tissue	
Microbubbles are Continuously Infused	
Steady State Clearance Equals the Inflow	
Quaia E. Assessment of tissue perfusion by contrast-enhanced ultrasound. Eur Radiology: 21 (3);	
2011.	

DESTRUCTION-REPERFUSION Perfusion Quantification Helps Understand Diseased Tissue Microbubbles are Continuously Infused Steady State Clearance Equals the Inflow Microbubble Destruction in a Single Plane

Quaia E. Assessment of tissue perfusion by contrast-enhanced ultrasound. Eur Radiology: 21 (3); 2011.

DESTRUCTION-REPERFUSION

- Perfusion Quantification Helps Understand Diseased Tissue
- Microbubbles are Continuously Infused
 - Steady State Clearance Equals the Inflow
- Microbubble Destruction in a Single PlaneMonitoring Microbubble Refill Rate

Quaia E. Assessment of tissue perfusion by contrast-enhanced ultrasound. Eur Radiology: 21 (3); 2011.

DESTRUCTION-REPERFUSION Perfusion Quantification Helps Understand Diseased Tissue How Does It Work? Iransducer Interrogation Plane Microbubble

DESTRUCTION-REPERFUSION	
 Perfusion Quantification Helps Understand Diseased Tissue What Information Do We Get? 	
What information be the det.	
	-
DESTRUCTION-REPERFUSION	
 Perfusion Quantification Helps Understand Diseased Tissue What Information Do We Get? 	-
• Time To Peak Intensity	
DESTRUCTION DEPERENCION	
DESTRUCTION-REPERFUSION	
 Perfusion Quantification Helps Understand Diseased Tissue What Information Do We Get? 	-
Time To Peak Intensity	
- Blood Flow Velocity (Slope)	

DESTRUCTION-REPERFUSION

- Perfusion Quantification Helps Understand Diseased Tissue
- What Information Do We Get?
 - Time To Peak Intensity
 - Blood Flow Velocity (Slope)
 - Fractional Blood Volume (Max Amplitude)

DESTRUCTION-REPERFUSION

- Perfusion Quantification Helps Understand Diseased Tissue
- What Information Do We Get?
 - Time To Peak Intensity
 - Blood Flow Velocity (Slope)
 - Fractional Blood Volume (Max Amplitude)
 - Blood Volume (Area Under the Curve)

DESTRUCTION-REPERFUSION

- Perfusion Quantification Helps Understand Diseased Tissue
- What Information Do We Get?
 - Time To Peak Intensity
 - Blood Flow Velocity (Slope)
 - Fractional Blood Volume (Max Amplitude)
 - Blood Volume (Area Under the Curve)
 - Mean Transit Time

DESTRUCTION-REPERFUSION	
Perfusion Quantification Helps Understand Diseased Tissue	
• Example:	
Destruction-Reperfusion at Pixel Level	
Streeter J, et al A Comparative Evaluation of Ultrasound Perfusion Imaging, Molecular imaging, and Volume Measurements in Evaluating the Response to Therapy, Unpublished Data. 2012.	
Totalio measurement in Estabating to hospitation of the up, or personal estate Estate	
DESTRUCTION-REPERFUSION	
Perfusion Quantification Helps Understand Diseased Tissue	
Example:	
Destruction-Reperfusion at Pixel Level Destruction Time to 00% (May Internation)	
Monitoring Time to 20% (Max Intensity)	
Streeter J, et al A Comparative Evaluation of Ultrasound Perfusion Imaging, Molecular imaging, and Volume Measurements in Evaluating the Response to Therapy, Unpublished Data. 2012.	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
DESTRUCTION-REPERFUSION	
Perfusion Quantification Helps Understand Diseased Tissue	
• Example:	
 Destruction-Reperfusion at Pixel Level Monitoring Time to 20% (Max Intensity) 	
Tumor Perfusion Monitoring During Therapy	

Streeter J, et al... A Comparative Evaluation of Ultrasound Perfusion Imaging, Molecular imaging, and Volume Measurements in Evaluating the Response to Therapy. Unpublished Data. 2012.

DESTRUCTION-REPERFUSION Perfusion Quantification Helps Understand Diseased Tissue Example: Destruction-Reperfusion at Pixel Level Monitoring Time to 20% (Max Intensity) Day 0 Day 2 Day 14 20 Sec 0 Sec

DESTRUCTION-REPERFUSION Perfusion Quantification Helps Understand Diseased Tissue Example: Destruction-Reperfusion at Pixel Level Monitoring Time to 20% (Max Intensity) A J Untreated Treated Treated Treated Treated Treated Featuation Day

ADVANCED IMAGING APPLICATIONS	
MOLECULAR IMAGING	
 Functional technique to evaluate changes on a molecular level Knowledge of molecular signature of pathology Integrins, selectins etcexpressed on endothelial cells 	
• VEGF, $\alpha_1\beta_3$, etc	
Dayton P, et al Targeted Imaging Using Ultrasound. J Magn Reson Imaging; 16 (4); 2002.	
MOLECULAR IMAGING	
 Targeted microbubble contrast agents Shell material fitted with adhesion ligand 	
 Example: α₁β₃ Ligand Cyclic RGD Peptide 	
5μm	
Challes see	
Dayton et al., Mol Imaging. 2004 Apr;3(2):125-34.	

MOLECULAR IMAGING

- · Targeted contrast agents injected intravascularly
- Collect at site of desired molecular marker expression
- Determine the presence or absence of a molecular change
- Assess disease or pathology prior to anatomical changes appear

Dayton et al., Mol Imaging. 2004 Apr;3(2):125-34.

MI & RESPONSE TO THERAPY

- Traditional methods for quantifying tumor progression volume
 - RECIST (Response Evaluation Criteria In Solid Tumors)
- · Size measurements provide delayed feedback
- Molecular imaging assesses molecular changes often before tumor size is affected

MI & RESPONSE TO THERAPY

- · Example:
 - Cancer Type: Human Pancreatic Adenocarcinoma
 - · Animal Model: Mouse
 - Therapy: Experimental Aurora-A Kinase Inhibitor
 - Imaging target: $\alpha_v \beta_3$

Streeter J, et al... A Comparative Evaluation of Ultrasound Perfusion Imaging, Molecular imaging, and Volume Measurements in Evaluating the Response to Therapy. Unpublished Data. 2012.

3	9	

Status of MI

- · Mainly pre-clinical use
- Clinical Trials in Europe
 - Bracco, VEGFR2 targeted imaging in human prostate

Acoustic Angiography • Goal: - Image microvasculature structure - Microvascular abnormalities/angiogenesis associated with malignancy

HOW ULTRASOUND ANGIOGRAPHY CAN BE USED IN ONCOLOGY RESEARCH:

- Blood vessel structure, density, and pattern can be assessed non-invasively
- Microvascular tortuosity abnormalities are an indicator of tumor development
- Prior studies have shown that vessel morphological characteristics are related to tumor malignancy and response to treatment (Bullitt)

Bullitt E, Ewend M, Vredenburgh J, et al, Neuroimage, 2009, Aug;47 Suppl 2:T143-51

Acoustic Angiography

- Traditional Ultrasound Transducer
 - Transmit and Receive (x1 Frequency Bandwidth)
- Dual Frequency Imaging
 - Transmit Using Low Frequency Bandwidth
 - Receive Using High Frequency Bandwidth

Gessner R, et al... High-resolution, high-contrast ultrasound imaging using a prototype dual-frequency transducer; In vitro and in vivo studies. IEEE Trans

SUMMARY: DIAGNOSTIC IMAGING WITH MICROBUBBLES

- perfusion imaging **
- quantitative dynamic perfusion imaging
- molecular imaging
- · acoustic angiography
- .

 ** only perfusion imaging is currently used clinically in the US

/	/I

ULTRASONIC ACTIVATABLE CONTRAST AGENTS
•Applications
 Vascular Occlusion
 Extravascular Diagnostics
Other microbubble applications
Sheeran P, et al Formulation and acoustic studies of a new phase-shift agent for diagnostic and therapeutic ultrasound. Langmuir, 27. 2011.

ULTRASO	NIC ACTIVATABLE	E NANOPARTICI	ES
Liquid PerfluoroLipid or Polymer			
 Tipped to Gased 	ous State by Ultrasound		
• Example:	Before Vaporization	After Vaporization	
	Not-Targeted	A SULLAND	

BIOLOGICAL EFFECTS	
Mild	
 Reversible Capillary Permeability Changes Reversible Cell Membrane Permeability 	
Small temperature changes	-
Strong	
Capillary Rupture	
Tissue ablation Cell death	
on data.	
Quaia E, et al Contrast media in ultrasonography-basic principles and clinical applications. New York: Springer; 2005.	
BIOLOGICAL EFFECTS	
 Occur at low frequencies (~1 MHz) below that typically used for clinical imaging 	
Occur at ultrasound intensity levels greater than that typically used for	
clinical imaging	
DIOSESSATION LINES THE DARKET ON LIV	
BIOEFFECTS USED THERAPEUTICALLY	
Drug delivery – can be achieved LOCALLY with focused ultrasound and microbubbles	
Enhanced blood brain barrier permeability	
Enhanced capillary permeability	
 Increased cellular delivery through cell membrane permeability Have been shown to significantly enhance local drug and gene 	
delivery, and corresponding therapeutic response	
 Improved thermal ablation (requires less delivered power with microbubbles – reduces thermal damage to healthy tissues) 	

EXAMPLE: TRANSI OPENING	ENT BLO	OD BRAI	N BARR	IER
1 <u>mm</u>	45 (5,40 do (6,40) 355 do (6,40) 455 do (6,4	L ž I	* * * * * * * * * * * * * * * * * * * *	0.60 MPa 0.45 MPa 0.30 MPa 1.30 MPa 1.3
Samiotaki G, Vlachos F, Tung YS, I	Konofagou EE, M	lagn Reson Me	d. 2012 Mar;67	7(3):769-77

MICROBUBBLE CLEARANCE	
 Microbubbles are vascular agents Phagocytosis in Liver and Spleen Gas is expelled through the lungs Shell content is eliminated by kidney and liver Phospholipids enter normal metabolism 	
 Typical circulation half life ~ 5-15 minutes 	
Quaia E, et al Contrast media in ultrasonography-basic principles and clinical applications. New York: Springer; 2005.	

SAFETY CONCERNS 1994 Albunex (albumin shell – air core) 1997 Optison (albumin shell – perfluorocarbon core) 2001 Definity (lipid shell – perfluorocarbon core) INDICATIONS Activated DEFINITY® (Perflutren Lipid Microsphere) Injectable Suspension is indicated for use in patients with suboptimal echocardiograms to opacily the left ventricular chamber and to improve the delineation of the left ventricular endocardal border. CONTRAINDICATIONS Do not administer DEFINITY® to patients with known or suspected right-to-left, bi-directional or transient right-to-left cardiac shunts, by intra-arterial injection, or to patients with known hypersensitivity to perflutren. Lantheus Medical Imaging

SAFETY CONCERNS - Following reports of 11 deaths and 199 serious cardiopulmonary reactions after the administration of such agents in echocardiography. - 2007: Black box Warning October 2007 Class label changes for ultrasound contrast agents: - Contraindications for patients with serious cardiopulmonary conditions - Boxed WARNING - Mandatory physiologic monitoring

SAFETY CONCERNS

- Extensive Investigative Studies
 - > 5 million administered doses
 - Most frequent adverse reactions are mild
 - Headache: 5%, Nausea 4%, Flushing 4%, Dizziness 3%.
 - arrythmias, hyper/hypotension, neurologic and anaphylactoid reactions rare

Procedure	Severe adverse effects	Risk
Contrast Echo	Death	1:500,000 1: 15,000
	Anaphylactoid reaction	
Myocardial scintigraphy	Fatal malignancy	1:1000- 1:10,000
Exercise ECG	MI/death	1:2,500
Dobutamine stress test	MI/VF	1:2000
Coronary angiography	Death	1:1,000
lodine (CT) contrast exam	Life-threatening reaction	1:500 - 1:5000

Table Modified from Main et al JACC 2007;50:2434-7 and from www.ICUS-society.org

FDA Revised Contrast Agents Labeling in Oct 2011

October 2011 OEFINITY® label changes:

- DEFINITY* label changes:

 He following discher use deleted from the Indications & Usage section:
 The saleing padefilizing via Celebrative with venorize stress or pharmacologic
 stress feeling have not been established.

 The following mountaining information uses deleted from the board WARNING:
 In patients with pathonously inperferention or untable cardiopationally
 contained to the second purpose of the control particular deleters and pathological containeds using section deleters good for at leters 30 monitors after
 DEFINITY* deministration.

 The following statement was added to the board WARNING:
 Most serious execution control within 30 minutes of administration."

WARNING: SERIOUS CARDIOPULMONARY REACTIONS

See full prescribing information for complete boxed warring

Serious cardiopulmonary reactions, including statilities, have occurred uncommonly during or following perfuture-containing microsphere administration (5.1). Most serious reactions occur within 30 minutes of administration.

- Assess all patients for the presence of any condition that precludes DEFINITY® administration (4).
 Always have resuscitation equipment and trained personnel readily available.

http://www.fda.gov

SAFETY OF ULTRASOUND CONTRAST AGENTS: SUMMARY

- ultrasound contrast agents are very safe with a low incidence of side effects
- They are not nephrotoxic or cardiotoxic
- incidence of hypersensitivity or allergic events appears much lower than current X-ray or MR contrast agents
- As in all clinical procedures, physicians should balance potential clinical benefit against the theoretical possibility of associated adverse bioeffects in humans
- New accreditation standards (ICAEL) for the first time require US echocardiography laboratories to use ultrasound contrast agents to improve suboptimal echocardiograms, unless an alternative imaging plan is in place
- Cardiologists and radiologists throughout Europe, Canada, Asia and Latin America routinely and safely use CEUS to image and diagnose abnormalities throughout the body as well as tumors of the liver, ovaries, breast, testicles, lymph nodes, etc.

QUESTIONS?	