Radiographic Tomosynthesis II: reconstruction algorithms

James T. Dobbins III, Ph.D., FAAPM
Director, Medical Physics Graduate Program
Ravin Advanced Imaging Laboratories
Departments of Radiology, Biomedical Engineering, and Physics
and Medical Physics Graduate Program
Duke University Medical Center

Acknowledgments and financial disclosure

James Dobbins:
Grant support from NIH (ROI CA80409) and GE Healthcare.
Patent jointly held by GE and Duke; JTD is co-inventor.
Has spoken at GE sponsored events.
Unpaid participant at GE Medical Advisory Board mtgs.

FDA statement: discussion will include off-label uses and applications not yet approved

© James T. Dobbins III, PhD. All rights reserved.
Tomosynthesis: section imaging from multi-projection image reconstruction (limited angle tomography)

Geometry of tomosynthesis image acquisition

© James T. Dobbins III, PhD. All rights reserved.
Geometries of motion

Parallel path
Partial isocentric
Isocentric

© James T. Dobbins III, PhD. All rights reserved.

3D Chest Radiography (Tomosynthesis)

• Vertical tube motion
• Total tube angle: 20-35°
• Number of Projected Images: 60 - 71
• Exam length: 10-11 sec (single breath-hold)
• Slice thickness: 4-5 mm

© James T. Dobbins III, PhD. All rights reserved.
Tomosynthesis image formation

Tomosynthesis algorithms

- Shift-and-add
- ART (algebraic reconstruction techniques)
- Tuned aperture computed tomography (TACT)
- Iterative methods (MLEM)
- Matrix inversion tomosynthesis (MITS)
- Filtered backprojection (FBP)
- Feldkamp (limited angle CBCT)
Shift-and-add reconstruction
(simple backprojection)

Acquisition geometry

Shift-and-add image formation

© James T. Dobbins III, PhD. All rights reserved.

The importance of deblurring

Conventional tomo section

After deblurring

© James T. Dobbins III, PhD. All rights reserved.
Development of deblurring methods

Self-masking subtraction tomosynthesis
Chakraborty et al, 1984

Selective plane removal
Ghosh Roy et al, 1985

Matrix inversion tomosynthesis
Dobbins, 1986

TACT and image restoration
Webber, Ruttimann, 1990s

Filtered backprojection
2000s

Matrix Inversion Tomosynthesis (MITS)
Removing the blur with MITS

Direct solution using linear algebra and the known acquisition geometry

• Much faster computationally than iterative deblurring
• Better performance at narrow tube angles than filtered backprojection
• However…. susceptible to noise at the lowest spatial frequencies (< ~ 0.1 cycles/mm)

Conventional tomosynthesis planes

\[
\begin{align*}
t_1 &= s_1 \otimes f_{11} + s_2 \otimes f_{12} + \cdots + s_n \otimes f_{1n} \\
t_2 &= s_1 \otimes f_{21} + s_2 \otimes f_{22} + \cdots + s_n \otimes f_{2n} \\
&\vdots \\
t_n &= s_1 \otimes f_{n1} + s_2 \otimes f_{n2} + \cdots + s_n \otimes f_{nn}
\end{align*}
\]
In the frequency domain...

\[
\begin{align*}
T_1 &= S_1 \times F_{11} + S_2 \times F_{12} + \cdots + S_n \times F_{1n} \\
T_2 &= S_1 \times F_{21} + S_2 \times F_{22} + \cdots + S_n \times F_{2n} \\
& \quad \vdots \\
T_n &= S_1 \times F_{n1} + S_2 \times F_{n2} + \cdots + S_n \times F_{nn}
\end{align*}
\]

Removing the blur with MITS

- Matrix form (freq space)
- Rewritten
- Solving for true structures

\[
T = M \times S
\]

\[
S = FT^{-1}(M^{-1} \times T)
\]

© James T. Dobbins III, PhD. All rights reserved.
Computing the MITS blurring functions

Shift for kth projection image to tomosynthesize jth plane: $-p_{jk}$

Blurring function for δ-function in ith plane when jth plane is tomosynthesized:

$$f_{ij} = \sum_k \delta(x - p_{ik} + p_{jk})$$

© James T. Dobbins III, PhD. All rights reserved.

MITS requires a correction for low-frequency noise susceptibility

1. High pass MITS planes (Gaussian filter, $\sigma \sim 0.1$ cycles/mm)
2. Low pass conventional planes (Gaussian filter, $\sigma \sim 0.1$ cycles/mm)
3. Add 1.25% of the filtered conventional spectra to the high-passed MITS spectra, to restore lung opacity in chest images

$$MITS_{fb}(f) = \left[1 - \exp\left(-\frac{f^2}{2\sigma^2}\right)\right] \cdot MITS(f) + FW \cdot \exp\left(-\frac{f^2}{2\sigma^2}\right) \cdot CONV(f)$$

© James T. Dobbins III, PhD. All rights reserved.
Frequency blending with MITS

20-degree tube motion, 61 proj images, 59 planes recon, 5 mm plane spacing

\[MITS_\sigma(f) = \left[1 - \exp\left(-\frac{f^2}{2\sigma^2} \right) \right] \cdot MITS(f) + \text{FW} \cdot \exp\left(-\frac{f^2}{2\sigma^2} \right) \cdot \text{CONV}(f) \]

\(\sigma = 0.01 \text{ mm}^{-1} \)

\(\sigma = 0.1 \text{ mm}^{-1} \)

© James T. Dobbins III, PhD. All rights reserved.

Slice sensitivity profile

Single-slice MITS

7-slice sliding average MITS

Courtesy of and copyright by Devon J. Godfrey, PhD
MITS provides excellent reconstruction even at very narrow tube angles

~ 12° tube movement ~ 6° tube movement

© James T. Dobbins III, PhD. All rights reserved.

Filtered backprojection

© James T. Dobbins III, PhD. All rights reserved.
Filtered backprojection methodology

- Ramp filter corrects for the 1/f inherent point response in frequency space
- Apodization (roll-off filter) suppresses high-frequency noise enhancement following ramp filter

Acquire projection images; take Fourier transform
Multiply by ramp filter
Multiply by roll-off filter
Reconstruct by shift-and-add

© James T. Dobbins III, PhD. All rights reserved.

Projection/Slice Theorem

1D FT
2D FT
Radial slice

Courtesy of and copyright by James Mainprize, PhD
Simple Backprojection

<table>
<thead>
<tr>
<th>Back Projection</th>
<th>Reconstructed Fourier</th>
<th>Original Fourier</th>
</tr>
</thead>
</table>

- Very blurry.
+ Noise tolerant

Courtesy of and copyright by James Mainprize, PhD

Principles of FBP for cone-beam imaging

Filtered Backprojection

Intuitive Interpretation
- Backprojection causes blur
- Correct the blur with an “inverse filter”

MTF(k)

Inverse filter = $1 / \text{MTF}(k)$

Ramp Filter
Reconstruction Filter

Courtesy of and copyright by James Mainprize, PhD
Filtered Backprojection

- Ramp filter provides exact reconstruction when:
 - Noise free
 - Sufficient samples (no missing data)

Courtesy of and copyright by James Mainprize, PhD
Tomosynthesis
(Limited View / Limited Angle)

Effect of Thick Slices
Slice Thickness Correction Filters

- View-dependent (angle) apodization

Apodizer

Ramp * Apodizer

T Mertelmeier, Optimizing filtered backprojection reconstruction for a breast tomosynthesis prototype device, Proc SPIE 6142, 2006

Courtesy of and copyright by James Mainprize, PhD

Back Projection Reconstructed Fourier Original Fourier

Courtesy of and copyright by James Mainprize, PhD
Comparison of MITS and FBP

- MITS uses direct solution using linear algebra and the known acquisition geometry (perfect rendition of in-plane structures)
- FBP uses well-known algorithm from CT
- MITS performs better at narrow tube angles
- Both are much faster computationally than iterative methods
- MITS is susceptible to noise at the lowest spatial frequencies (< ~ 0.1 cycles/mm)
- FBP must use roll-off filter to avoid noise at high-frequencies

© James T. Dobbins III, PhD. All rights reserved.
Iterative reconstruction strategies

- Breast volume is sampled using a three-dimensional matrix of elements (voxels)
- Typical voxel size: 0.1 mm × 0.1 mm × 1 mm
- The value of a voxel is the linear x-ray attenuation coefficient μ of that element

Courtesy of and copyright by Tao Wu, PhD
Maximum Likelihood Expectation Maximization (ML-EM)

Initial 3D Model

\[\mu^{(n)} \]

Forward projection

\[\mu^{(n+1)} \]

Update

Optimized Likelihood Function

\[\mu^{(\text{end})} \]

Measured Projections:
\[Y \]

Calculated Projections:
\[Y^{(n)} \]

\[\Delta \mu^{(n+1)} \]

ML-EM Reconstruction: Likelihood Function

Likelihood Function

\[L = P(Y | \mu) \]: probability of getting the measured projections \(Y \), given a 3D model

\[\mu^{(n)} \] is updated iteratively so that \(L^{(n+1)} > L^{(n)} \)

The reconstruction solution is the 3D attenuation distribution model that maximizes \(L \)
Advantages/disadvantages of iterative methods relative to FBP/MITS

- Better modeling of system, including truncation effects
- Potentially better noise properties
- Potentially better with fewer projections
- Much slower computationally than FBP or MITS

Translational issues remaining

Reconstruction algorithms:

- Low-freq contrast in FBP (less high-pass filtered look)
- Noise improvement: MITS+FBP
- SART
- MLEM - multiple processors
- Clinical evaluation/comparison of various algorithms
Review articles:

For questions or comments:
james.dobbins@duke.edu

Ravin Advanced Imaging Laboratories
RAILabs.duhs.duke.edu

© James T. Dobbins III, PhD. All rights reserved.