HDR Brachytherapy: Dissemination of air-kerma strength

Disclosure

 Larry DeWerd has a partial interest in Standard Imaging

Determination of air-kerma strength

- Traceability to NIST via calibration points on ionization chamber
- Measurement in air ADCL realization of quantity
- Comparison of various sources
- Transfer to well chambers
- Uncertainties involved in the process

🔶 Establishing NIST traceability

- The ionization chamber is calibrated at two energy points to interpolate to the weighted average energy of the HDR ¹⁹²Ir source, which is approximately 397 keV.
- The original method (Goetsch method) included M250 and Cs-137 with an Awall factor.
- See Med Phys 38:6721-6728 (2011)

Ionization Chamber Calibration

- Goetsch, et al method
 Existing NIST ¹³⁷Cs and 250M x-ray calibration points may be used for ¹⁹²Ir by interpolation

$$(\mathbf{N}_{k})_{Ir} = \frac{I(A_{w}N_{k})_{x-ray} + (A_{w}N_{k})_{Cs}I}{2(A_{w})_{Ir}}$$

• The same buildup cap with thickness sufficient to provide CPE for highest energy must be used for both NIST calibrations

🗣 Establishing traceability

- Multiple points were suggested by van Dyke, however NIST traceable airkerma calibration coefficients for the discrete photon energies do not exist.
- Mainegra-Hing and Rogers argued that it is reasonable that an interpolation between M250 and Cs-137 for a flat energy response chamber can be used.
- The inverse of the calibration coefficients should be used.

Reasonable NIST traceable technique

 The air kerma calibration coefficient is then determined by

 $\frac{1}{(N_{K})_{_{102}}_{_{1r}}} = \frac{1}{2} \left[\frac{1}{(N_{K})_{_{M250}}} + \frac{1}{(N_{K})_{_{137Cs}}} \right]$

- A comparison of the air kerma coefficient for an Exradin A3 from Goetsch and the inverse technique shows a difference of -0.03 %
- The inverse technique is now used.

🔶 Chamber traceability to NIST

 The uncertainty for the air-kerma coefficient using M250 and Cs-137 beams for our chamber as calibrated by NIST is

Туре А	Туре В
-	0.7 %
0.25 %	-
0.74 % (k=1)	
	Type A - 0.25 % 0.74 %

Determination of Air-kerma strength of ¹⁹²Ir source

- There are two methods that are in use:
 - Shadow shield (Measurement at 1 meter and then a lead block in front of chamber for scatter measurement.)
 - 7 distance technique: first proposed at the University of Wisconsin by Goetsch et al. in 1991
- These agree within 0.5% based on round-robin results among ADCLs

🗣 7- distance In-air Technique

- Measures the output of the source at seven source-to-chamber distances from 10 cm to 40 cm, using charge readings at each position.
- A verified computer algorithm solves the 35 equations to over determine the Air-kerma strength

Calibration of Source (formula used)

 Primary radiation falls off as the inverse square of the source-to-chamber distance

$$f = (M_d - M_s)(d+c)^2$$

M_s and *c* are constants independent of position
 The distance between chamber positions. Ad is

- The distance between chamber positions, ∆d, is known to +/- 0.1 mm
- Three measurements are needed to find f, M_s and c
- 7 distances are used to provide a more accurate result

🔶 Air kerma from 7-D technique

• Air kerma rate is given by

$$\dot{K} = \frac{f_{ave}(N_k)_{Ir}}{(d+c)^2 \Delta t}$$

• Air-kerma strength is determined by taking it into vacuum.

Various HDR sources

- There are 5 HDR sources on the market
- Monte Carlo modeling shows that there may be a difference between them.
- We investigated all sources using the 7-D technique
- Published in Med Phys 38: 6721-6729 (2011)
- UWADCL measurement was originally based on the "Classic" Nucletron HDR source

20 years of measurement

- The classic Nucletron source has been measured over a 20 year period.
- Each individual source has been compared to the other via 3 well chambers
- The value for the well chamber after measurement by the 7 distance technique is always within <u>+</u> 0.5%

Changes over the years

- The NIST standard changed in 2003
 The Air kerma Interpolation method shown to be 1/N_K
 Additional HDR sources introduced
 7-D for all individual repeats of source air-kerma atomath within 0.5%

- kerma strength within 0.5% Comparisons with other labs (Henri Becquerel, NPL, PTB, NRCC) within 0.5% Summary of measurements with all sources statistically different but all within 1% of the mean

Average percent differences

HDR Source Model	% difference from Working Standard
Classic Nucletron	0.47
Nucletron V2	-0.10
VariSource VS2000	-1.13
GammaMed Plus	-0.20
Flexisource	0.89
Average for all sources	-0.01

Air-kerma strength uncertainty

0.05	
2	0.05
0	0.2
0	0.1
0	0.04
0	0.74
0	0.11
0	0.005
0.43	0
0	0.2
0	0.03
0.433	0.81
0.92	
	0 0 0 0 0 0.43 0 0 0.433 0.93

Calibration in clinic

- For the clinical physicist, a calibrated well chamber should be used.
- Calibration point should be at the sweet spot.
- The clinic needs to monitor the output of the well chamber using QA techniques
- The ADCL will calibrate the well chamber

Uncertainty for well chamber calibration

Parameter	Uncertainty (%)
The ADCL chamber and response to Source model effects	0.96
Air kerma strength source calibration	0.92
Customer Well chamber	0.309
Customer Electrometer calibration	0.166
Overall Uncertainty (k=1)	1.37
Overall expanded uncertainty (k=2)	2.75

Clinical HDR measurements

- Use a well chamber calibrated at an ADCL
- ADCL uses the technique mentioned here to give N_k which is used in clinic to give S_k

 $S_k = Rdg*N_{sk}*C_e*C_{tp}$

Where Rdg is the electrometer reading in amperes

Summary

- When all techniques (1/N_K) and all sources are averaged, various points tend to counteract others
- The average for all sources is within 0.01% of the factor in use for 20 years.
- The ADCL has changed but the clinic stays with the same number regardless of the type of source, with an uncertainty of 2.75% (k=2)

Acknowledgements

- Thanks are due to
 - Students and staff of the UW ADCL
 All those who send us calibration instruments that support the research
 - instruments that support the research program of the UW ADCL.